LGTB 有一个非常大的数,并且他想对它进行Q 次操作
每次操作是把这个大数中的某种数字全部替换成一个数字串
他想知道Q 次操作之后得到的数对1000000007(109 + 7) 取模的结果,请输出给他
输入
输入第一行代表一个串S 代表初始的数
接下来一行有一个数字Q 代表操作次数
接下来Q 行,每行一个形如a->b1b2b3…bk 的串,代表将a 变成b1b2b3…bk
对于40% 的数据,1|S|<=1000,1<=Q<=10
对于100% 的数据,1<=|S|<=10^5,1<=Q<=10^5,询问中b 串的总长度不超过105
注意b 串可以为空
输出
输出包含一个数字,代表LGTB 想要的结果
样例
样例输入样例输出
123123
1
2->00
10031003
样例输入样例输出
222
2
2->0
0->7
777

最终答案肯定是由每个原串里的数字变成一个区间得到的
所以我们用dp[i][j]代表i这个数字从第j个询问开始进行到最后得到的数%1e9+7答案是多少
再用L[i][j]代表i这个数字从第j个询问开始进行到最后得到的数的长度是多少
那么对于原串中的每个数,对于答案的贡献就是dp[i][q] * pow(10,之后所有数的长度和)
dp从后往前转移即可,唯一需要注意的就是长度也要取模,因为是指数,根据费马小定理应该对1e9+6取模

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
lol Mod=;
string s,Q[];
lol ans,num[],f[][],LL,L[][];
lol qpow(lol x,lol y)
{
lol res=;
while (y)
{
if (y&) res=res*x%Mod;
x=x*x%Mod;
y=y/;
}
return res;
}
int main()
{int i,q,j,k;
cin>>s;
cin>>q;
for (i=;i<=q;i++)
{
cin>>Q[i];
num[i]=Q[i][]-'';
int len=Q[i].size();
Q[i]=Q[i].substr(,len-);
}
for (i=;i<=;i++)
f[i][q+]=i,L[i][q+]=;
for (i=q;i>=;i--)
{
for (j=;j<;j++)
{
if (num[i]!=j)
{
f[j][i]=f[j][i+];
L[j][i]=L[j][i+];
continue;
}
L[j][i]=;
f[j][i]=;
for (k=Q[i].size()-;k>=;k--)
{
f[j][i]+=f[Q[i][k]-''][i+]*qpow(,L[j][i])%Mod;
f[j][i]%=Mod;
L[j][i]+=L[Q[i][k]-''][i+];
L[j][i]%=Mod-;
}
}
}
int len=s.size();
LL=;ans=;
for (i=len-;i>=;i--)
{
ans+=f[s[i]-''][]*qpow(,LL)%Mod;
ans%=Mod;
LL+=L[s[i]-''][];
LL%=Mod-;
}
cout<<ans;
}

LGTB 与大数的更多相关文章

  1. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

  2. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  3. c语言经典算法——查找一个整数数组中第二大数

    题目: 实现一个函数,查找一个整数数组中第二大数. 算法思想: 设置两个变量max1和max2,用来保存最大数和第二大数,然后将数组剩余的数依次与这两个数比较,如果这个数a比max1大,则先将max1 ...

  4. 杨氏矩阵:查找x是否在矩阵中,第K大数

    参考:http://xudacheng06.blog.163.com/blog/static/4894143320127891610158/ 杨氏矩阵(Young Tableau)是一个很奇妙的数据结 ...

  5. 蓝桥杯算法提高 P1001(大数乘法)

      算法提高 P1001   时间限制:1.0s   内存限制:256.0MB   当两个比较大的整数相乘时,可能会出现数据溢出的情形.为避免溢出,可以采用字符串的方法来实现两个大数之间的乘法. 具体 ...

  6. 51nod 1005 大数加法

    #include<iostream> #include<string> using namespace std; #define MAXN 10001 },b[MAXN]={} ...

  7. PHP大数(浮点数)取余

    一般我们进行取余运算第一个想到的就是用百分号%,但当除数是个很大的数值,超出了int范围时,这样取余就不准确了. php大数(浮点数)取余函数 /** * php大数取余 * * @param int ...

  8. HDU 5686 斐波那契数列、Java求大数

    原题:http://acm.hdu.edu.cn/showproblem.php?pid=5686 当我们要求f[n]时,可以考虑为前n-1个1的情况有加了一个1. 此时有两种情况:当不适用第n个1进 ...

  9. 区间K 大数查询

      算法训练 区间k大数查询   时间限制:1.0s   内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列 ...

随机推荐

  1. Leetcode 14——Longest Common Prefix

    题目:Write a function to find the longest common prefix string amongst an array of strings. 很简单的一个描述,最 ...

  2. linux,windows,ubuntu下git安装与使用

    ubuntu下git安装与使用:首先应该检查本地是否已经安装了git ,如果没有安装的话,在命令模式下输入 sudo apt-get install git 进行安装 输入git命令查看安装状态及常用 ...

  3. android 与 服务器通信

    android 与 服务器通信 服务端代码: (1)control 层 /** * 用户登录 * @return */ @RequestMapping(value = "/login&quo ...

  4. alpha-咸鱼冲刺day5

    一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 !!!QAQ可以做到跟数据库交互了!!!!先来撒花花!(然后继续甲板) 四,问题困难 日常啥都不会,百度真心玩一年. 还得自学n ...

  5. JAVA_SE基础——56.包的创建

    接下来我来给大家讲下--包 , 先看一段代码 class Demo1{ public static void main(String[] args) { System.out.println(&quo ...

  6. python多目录字符串查找匹配

    1. 需求来自于实际工作: 需要处理一批服务器上运行的redis实例,每个redis实例可能有密码,也可能没有,有密码的,密码配置格式一定是: requirepass XXXXX # XXXX是密码 ...

  7. 深度爬取之rules

    深度爬取之rules CrawlSpider使用rules来决定爬虫的爬取规则,并将匹配后的url请求提交给引擎.所以在正常情况下,CrawlSpider不需要单独手动返回请求了. 在rules中包含 ...

  8. hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(2)安装hadoop

    一.依赖安装 安装JDK 二.文件准备 hadoop-2.7.3.tar.gz 2.2 下载地址 http://hadoop.apache.org/releases.html 三.工具准备 3.1 X ...

  9. SQL Server 2012 管理新特性:AlwaysOn 可用性组

    SQL Server 2012 新特性(一)管理新特性:AlwaysOn 一.准备环境 1.准备4台计算机 域控制器DC1,IP地址192.168.1.1 主节点SQL1:IP地址192.168.1. ...

  10. Linux:crontab组件部署linux定时任务

    crontab简介 crond 是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划任务类似,当安装完成操作系统后,默认会安装此服务 工具,并且会自动启动c ...