Description

在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工业城市和农业城市数目相等。现在国王想把城市分给他的两个儿子,大儿子想知道,他选择一段标号连续的城市作为自己的领地,并把剩下的给弟弟,能够满足两端都是自己城市的 exciting 路径比两端都是弟弟的城市的 exciting 路径数目多的方案数。

Solution

我们分析一下:

要求的是满足 两端点全在 \([l,r]\) 之间的路径-两端点全在 \([l,r]\) 外的路径>0 的方案数 .....①

我们两个端点都在某个位置会不好算,如果只有一个端点在区间内就比较好算

求出至少一个有端点在 \([l,r]\) 的方案数=两个端点都在 \([l,r]\) 的方案数+有一个在内另一个在外的方案数,

我们发现如果另一个端点在 \([l,r]\) 内,另一端点在外的情况在①式中相减之后抵消了,所以根本不需要考虑这种情况

所以只需要求出 \(w[x]\) 表示以 \(x\) 为其中一个端点的合法的路径的方案数,\(\sum_{i=l}^{r}w[i]\) 就是至少有一个端点在 \([l,r]\) 内的方案数,设为 \(cnt\)

设总合法的路径为 \(tot\)

我们维护两个单调指针,当 \(cnt>tot-cnt\) 时,移动指针 \(l\) 就行了,

至于 \(w[x]\) 的求法就是一个基本的点分治了,值得注意的是合并子树的统计方法仿佛在这题不能用,需要用容斥

#include<bits/stdc++.h>
using namespace std;
const int N=100005;
int n,a[N],son[N]={N},sz[N],head[N],nxt[N<<1],to[N<<1],num=0;
int sum,rt=0;bool vis[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void getroot(int x,int last){
sz[x]=1;son[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==last || vis[u])continue;
getroot(u,x);
sz[x]+=sz[u];son[x]=max(son[x],sz[u]);
}
son[x]=max(son[x],sum-sz[x]);
if(son[x]<son[rt])rt=x;
}
int st[N],top=0,id[N],dis[N],w[N],t[N*2];
inline void dfs(int x,int last,int val){
st[++top]=x;dis[x]=val;t[val+N]++;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==last || vis[u])continue;
dfs(u,x,val+a[u]);
}
}
inline void calc(int r,int x,int op,int sta){
top=0;dfs(x,x,sta+a[x]);
for(int i=1;i<=top;i++)
w[st[i]]+=op*t[N-dis[st[i]]+a[r]];
for(int i=1;i<=top;i++)t[N+dis[st[i]]]--;
}
inline void solve(int x){
vis[x]=1;calc(x,x,1,0);
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(vis[u])continue;
calc(x,u,-1,a[x]);
rt=0;sum=sz[u];getroot(u,x);solve(rt);
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),a[i]?a[i]=1:a[i]=-1;
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
link(x,y);link(y,x);
}
rt=0;sum=n;getroot(1,1);
solve(rt);
long long ans=0,cnt=0,tot=0;
for(int i=1;i<=n;i++)tot+=w[i];
for(int i=1,l=1;i<=n;i++){
cnt+=w[i];
while(l<i && cnt>tot-cnt)cnt-=w[l++];
ans+=l-1;
}
cout<<ans<<endl;
return 0;
}

LOJ #6119. 「2017 山东二轮集训 Day7」国王的更多相关文章

  1. loj6119 「2017 山东二轮集训 Day7」国王

    题目描述 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工 ...

  2. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

  3. loj #6079. 「2017 山东一轮集训 Day7」养猫【最大费用最大流】

    首先假设全睡觉,然后用费用流考虑平衡要求建立网络流 把1~n的点看作是i-k+1~k这一段的和,连接(i,i+k,1,e[i]-s[i]),表示把i改成吃饭,能对i~i+k-1这一段的点产生影响:然后 ...

  4. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  5. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  6. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  7. 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP

    [LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...

  8. LOJ #6074. 「2017 山东一轮集训 Day6」子序列

    #6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...

  9. loj6102 「2017 山东二轮集训 Day1」第三题

    传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # ...

随机推荐

  1. 201621123060 《Java程序设计》第六周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...

  2. 将数组写入Plist文件中

    -(void)writeToPlist:(NSArray *)uploadingfiles  Name:(NSString *)name {                  NSMutableArr ...

  3. IOS UITextView自适应高度

    LOFTER app需要实现了一个类似iPhone短信输入框的功能,它的功能其实蛮简单,就是:[UITextView的高度随着内容高度的变化而变化].实现思路应该是: 在UITextView的text ...

  4. 201421123042 《Java程序设计》第9周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1. List中指定元素的删除(题集题目) 1.1 实验总结.并回答:列举至 ...

  5. [译]RabbitMQ教程C#版 - 工作队列

    先决条件 本教程假定RabbitMQ已经安装,并运行在localhost标准端口(5672).如果你使用不同的主机.端口或证书,则需要调整连接设置. 从哪里获得帮助 如果您在阅读本教程时遇到困难,可以 ...

  6. OpenShift实战(三):OpenShift持久化存储Registry

    1.查看Registry组件的DC关于volume的定义 可以看到registry-storage这个挂载点被指向了一个/registry目录,使用的是empty directory,即数据保存在计算 ...

  7. c# BinaryWriter 和 BinaryReader

    string path = @"C:\Users\Administrator\Desktop\1.txt"; using (FileStream ws = new FileStre ...

  8. 使用Java High Level REST Client操作elasticsearch

    Java高级别REST客户端(The Java High Level REST Client)以后简称高级客户端,内部仍然是基于低级客户端.它提供了更多的API,接受请求对象作为参数并返回响应对象,由 ...

  9. python之路——初识函数

    阅读目录 为什么要用函数 函数的定义与调用 函数的返回值 函数的参数 本章小结 返回顶部 为什么要用函数 现在python届发生了一个大事件,len方法突然不能直接用了... 然后现在有一个需求,让你 ...

  10. CentOS7从U盘中拷贝文件

    1. 要想从U盘中拷贝文件,必须要将U盘挂载到一个目录中,所以必须新建一个目录,一般建在/mnt下.我们执行:mkdir /mnt/usb来新建一个目录. 2. 查看U盘是否已经被识别.执行:df - ...