LOJ #6119. 「2017 山东二轮集训 Day7」国王
Description
在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工业城市和农业城市数目相等。现在国王想把城市分给他的两个儿子,大儿子想知道,他选择一段标号连续的城市作为自己的领地,并把剩下的给弟弟,能够满足两端都是自己城市的 exciting 路径比两端都是弟弟的城市的 exciting 路径数目多的方案数。
Solution
我们分析一下:
要求的是满足 两端点全在 \([l,r]\) 之间的路径-两端点全在 \([l,r]\) 外的路径>0 的方案数 .....①
我们两个端点都在某个位置会不好算,如果只有一个端点在区间内就比较好算
求出至少一个有端点在 \([l,r]\) 的方案数=两个端点都在 \([l,r]\) 的方案数+有一个在内另一个在外的方案数,
我们发现如果另一个端点在 \([l,r]\) 内,另一端点在外的情况在①式中相减之后抵消了,所以根本不需要考虑这种情况
所以只需要求出 \(w[x]\) 表示以 \(x\) 为其中一个端点的合法的路径的方案数,\(\sum_{i=l}^{r}w[i]\) 就是至少有一个端点在 \([l,r]\) 内的方案数,设为 \(cnt\)
设总合法的路径为 \(tot\)
我们维护两个单调指针,当 \(cnt>tot-cnt\) 时,移动指针 \(l\) 就行了,
至于 \(w[x]\) 的求法就是一个基本的点分治了,值得注意的是合并子树的统计方法仿佛在这题不能用,需要用容斥
#include<bits/stdc++.h>
using namespace std;
const int N=100005;
int n,a[N],son[N]={N},sz[N],head[N],nxt[N<<1],to[N<<1],num=0;
int sum,rt=0;bool vis[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void getroot(int x,int last){
sz[x]=1;son[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==last || vis[u])continue;
getroot(u,x);
sz[x]+=sz[u];son[x]=max(son[x],sz[u]);
}
son[x]=max(son[x],sum-sz[x]);
if(son[x]<son[rt])rt=x;
}
int st[N],top=0,id[N],dis[N],w[N],t[N*2];
inline void dfs(int x,int last,int val){
st[++top]=x;dis[x]=val;t[val+N]++;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==last || vis[u])continue;
dfs(u,x,val+a[u]);
}
}
inline void calc(int r,int x,int op,int sta){
top=0;dfs(x,x,sta+a[x]);
for(int i=1;i<=top;i++)
w[st[i]]+=op*t[N-dis[st[i]]+a[r]];
for(int i=1;i<=top;i++)t[N+dis[st[i]]]--;
}
inline void solve(int x){
vis[x]=1;calc(x,x,1,0);
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(vis[u])continue;
calc(x,u,-1,a[x]);
rt=0;sum=sz[u];getroot(u,x);solve(rt);
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),a[i]?a[i]=1:a[i]=-1;
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
link(x,y);link(y,x);
}
rt=0;sum=n;getroot(1,1);
solve(rt);
long long ans=0,cnt=0,tot=0;
for(int i=1;i<=n;i++)tot+=w[i];
for(int i=1,l=1;i<=n;i++){
cnt+=w[i];
while(l<i && cnt>tot-cnt)cnt-=w[l++];
ans+=l-1;
}
cout<<ans<<endl;
return 0;
}
LOJ #6119. 「2017 山东二轮集训 Day7」国王的更多相关文章
- loj6119 「2017 山东二轮集训 Day7」国王
题目描述 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工 ...
- loj #6077. 「2017 山东一轮集训 Day7」逆序对
#6077. 「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...
- loj #6079. 「2017 山东一轮集训 Day7」养猫【最大费用最大流】
首先假设全睡觉,然后用费用流考虑平衡要求建立网络流 把1~n的点看作是i-k+1~k这一段的和,连接(i,i+k,1,e[i]-s[i]),表示把i改成吃饭,能对i~i+k-1这一段的点产生影响:然后 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP
[LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- loj6102 「2017 山东二轮集训 Day1」第三题
传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # ...
随机推荐
- Flask 扩展 国际化 本地化
pip install flask-babel 先初始化一个Flask-Babel的实例 from flask import Flask from flask.ext.babel import Bab ...
- Twisted 介绍 及TCP广播系统实例
twisted 提供更多传输层 udp,tcp,tls及应用层HTTP,FTP等协议的支持,在开发方法上更提供了丰富的特性来支持异步编程 安装twisted 建议使用anaconda 安装,conda ...
- Vim 游戏 2048
给大家介绍一款可以在Vim里面玩的游戏 vim2048. 界面如图: 操作非常简单,可以用 hjkl 或者 上下左右方向键移动 项目开源地址为: https://github.com/wsdjeg/v ...
- 双击CAD对象(具有扩展数据),显示自定义对话框实现方法
转自:Cad人生 链接:http://www.cnblogs.com/cadlife/p/3463337.html 题目:双击CAD对象,显示自定义对话框实现方法 内容粘贴如下: 主要是绑定两个事件: ...
- ES6常用新特性
https://segmentfault.com/a/1190000011976770?share_user=1030000010776722 该文章为转载文章!仅个人喜好收藏文章! 1.前言 前几天 ...
- Gson解析Json数组
需求:从steam官网获取英雄数据,即为Json数据,并导入到本地数据库 Json数据是这样的 { "result": { "heroes": [ { &quo ...
- JAVA类的方法调用和变量(全套)
一.类的分类: 1.普通类 2.抽象类(含有抽象方法的类) 3.静态类(不需要实例化,就可以使用的类) 二.方法的分类: 1.私有方法(只有类的内部才可以访问的方法) 2.保护方法(只有类的内部和该该 ...
- LeetCode & Q122-Best Time to Buy and Sell Stock II-Easy
Description: Say you have an array for which the ith element is the price of a given stock on day i. ...
- js 防止重复点击
1.添加flag 适用于ajax 表单提交,提交之前flag = false , 提及中,true ,提交后false 2.事件重复点击: <script> var throttle = ...
- python3 常用模块
一.time与datetime模块 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们 ...