题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3126

题解:

单调队列优化DP,神奇。。
(好像某次考试考过,当时我用了差分约束+SPFA优化,然后过了。。。)

记 L[i] 表示i左边没有覆盖i点的区间中的最大的左端点
R[i] 表示覆盖i的区间中的最小的左端点的前一个位置,
那么,如果在i位置放一个点的话,在L[i]~R[i]里面也必须要放一个点。
(这两个数组可以O(N)计算前后缀最大最小值得到。)
即定义 DP[i] 为i位置放点时的总点数,
转移:DP[i]=max(DP[j])+1 (L[i]<=j<=R[i])
然后可以用单调队列优化。
和普通的单调队列有点不同,因为多了一个R[i]这个转移的右端点限制。

其实本质还是相同的~~

考虑到L[i],R[i]都单增,

所以在原来队列的首尾指针l,r的基础上多开一个rr指针就好了。

代码:

  1. #include<cstdio>
  2. #include<cstring>
  3. #include<iostream>
  4. #define MAXN 200050
  5. using namespace std;
  6. int L[MAXN],R[MAXN],F[MAXN];
  7. int N,M;
  8. int main(){
  9. static int Q[MAXN],l,r,_r;
  10. scanf("%d%d",&N,&M);
  11. for(int i=1;i<=N+1;i++) R[i]=i-1;
  12. for(int i=1,l,r;i<=M;i++){
  13. scanf("%d%d",&l,&r);
  14. L[r+1]=max(L[r+1],l);
  15. R[r]=min(R[r],l-1);
  16. }
  17. for(int i=2;i<=N+1;i++) L[i]=max(L[i-1],L[i]);
  18. for(int i=N;i>=1;i--) R[i]=min(R[i],R[i+1]);
  19. l=_r=r=1; Q[1]=0;
  20. for(int i=1;i<=N+1;i++){
  21. while(_r<=R[i]&&_r<=N){
  22. if(F[_r]==-1){_r++; continue;}
  23. while(l<=r&&F[Q[r]]<=F[_r]) r--;
  24. Q[++r]=_r; _r++;
  25. }
  26. while(l<=r&&Q[l]<L[i]) l++;
  27. if(l<=r) F[i]=F[Q[l]]+(i!=N+1?1:0);
  28. else F[i]=-1;
  29. }
  30. printf("%d",F[N+1]);
  31. return 0;
  32. }

  

●BZOJ 3126 [Usaco2013 Open]Photo的更多相关文章

  1. 数据结构(线段树):BZOJ 3126: [Usaco2013 Open]Photo

    3126: [Usaco2013 Open]Photo Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 116 Descrip ...

  2. Bzoj 3126[Usaco2013 Open]Photo 题解

    3126: [Usaco2013 Open]Photo Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 335  Solved: 169[Submit] ...

  3. bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp

    Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...

  4. BZOJ 3126 [USACO2013 Open]Photo (单调队列优化DP)

    洛谷传送门 题目大意:给你一个长度为$n$的序列和$m$个区间,每个区间内有且仅有一个1,其它数必须是0,求整个序列中数字1最多的数量 神题,竟然是$DP$ 定义$f_{i}$表示第i位放一个1时,最 ...

  5. bzoj3126[Usaco2013 Open]Photo 单调队列优化dp

    3126: [Usaco2013 Open]Photo Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 188[Submit] ...

  6. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

  7. [BZOJ 3126] Photo

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3126 [算法] 差分约束系统 注意SPFA判负环的条件应为 : 若所有点入队次数之和 ...

  8. BZOJ 3315: [Usaco2013 Nov]Pogo-Cow( dp )

    我真想吐槽USACO的数据弱..= = O(n^3)都能A....上面一个是O(n²), 一个是O(n^3) O(n^3)做法, 先排序, dp(i, j) = max{ dp(j, p) } + w ...

  9. BZOJ 3314: [Usaco2013 Nov]Crowded Cows( 单调队列 )

    从左到右扫一遍, 维护一个单调不递减队列. 然后再从右往左重复一遍然后就可以统计答案了. ------------------------------------------------------- ...

随机推荐

  1. 项目Alpha冲刺Day4

    一.会议照片 二.项目进展 1.今日安排 学习熟悉前台框架且搭建前台页面框架. 2.问题困难 使用了前端的构建工具webpack,困难在于怎么使用gradle结合它连同后台框架中的配置一起打包,因为本 ...

  2. Django 博客

    blogproject/blogproject/settings.py ## 其它配置代码... # 把英文改为中文 LANGUAGE_CODE = 'zh-hans' # 把国际时区改为中国时区 T ...

  3. itchat 微信的使用

    #coding=utf8 import itchat # 自动回复 # 封装好的装饰器,当接收到的消息是Text,即文字消息 @itchat.msg_register('Text') def text ...

  4. 2017 清北济南考前刷题Day 4 afternoon

    期望得分:30+50+30=110 实际得分:40+0+0=40 并查集合并再次写炸... 模拟更相减损术的过程 更相减损术,差一定比被减数小,当被减数=减数时,停止 对于同一个减数来说,会被减 第1 ...

  5. 前端之bootstrap模态框

    简介:模态框(Modal)是覆盖在父窗体上的子窗体.通常,目的是显示来自一个单独的源的内容,可以在不离开父窗体的情况下有一些互动.子窗体可提供信息.交互等. Modal简介 Modal实现弹出表单 M ...

  6. javascript 腾讯ABS云平台面试题及面试经历

    既然说到面试前端肯定是Javascript各种问,只好各种答. 面试题肯定离不了,最近热门的Vue.js,React.js,Angular.js,Gulp,Webpack还有各种Js问题,还有令人头痛 ...

  7. iot前台开发环境:搭建 SpringBoot+angularJs2

    参考网站 Angular 中文官网:https://angular.cn/ 参考代码:https://ng.ant.design/#/components/dropdown  npm install ...

  8. ELK学习总结(2-3)Mget获取多个文档

     mget 获取多个文档 1.curl 命令格式:mget获取多个文档: curl  'localhost:9200/_mget'  -d  '{ "docs":[ { " ...

  9. ASP.NET MVC5 Forms登陆+权限控制(控制到Action)

    一.Forms认证流程 请先参考如下网址: http://www.cnblogs.com/fish-li/archive/2012/04/15/2450571.html 本文主要介绍使用自定义的身份认 ...

  10. 【已解决】React中配置Sass引入.scss文件无效

    React中配置Sass引入.scss文件无效 在react中使用sass时,引入.scss文件失效 尝试很多方法没法解决,最终找到解决方法,希望能帮助正在坑里挣扎的筒子~ 在node_modules ...