题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=1042

题解:

容斥原理,dp预处理
首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有无限个情况下有多少种方法支付 i元。
然后对于每个询问,答案就是 dp[S]-不合法的方法。
那么这个不合法的方法数怎么求呢?
举个例子:如果 c1不能超过d1个的话,那么我们就强制用掉 d1+1个 c1硬币,
那么dp[S-(d1+1)*c1]就是c1不合法的方法数。

所以这样就可以类似的求出其它硬币的不合法的方法数,以及某几种硬币都不合法的方法数,用于容斥计算。
即 ANS=dp[S] - 一种硬币不合法 + 两种硬币不合法 -三种硬币不合法 +四种硬币不合法。
DFS实现

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 105000
#define ll long long
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
ll dp[MAXN],c[10],d[10];
ll tot,ANS,S;
void dfs(int p,int num,ll de){
if(p==5) return;
ll nde=de+(d[p]+1)*c[p];
ll val=S-nde<0?0:dp[S-nde];
ANS+=val*(((num+1)&1)?-1:1);
dfs(p+1,num+1,nde);
dfs(p+1,num,de);
}
int main()
{
dp[0]=1;
for(int i=1;i<=4;i++) {
scanf("%lld",&c[i]);
for(int j=c[i];j<=100000;j++)
dp[j]+=dp[j-c[i]];
}
scanf("%lld",&tot);
while(tot--){
for(int i=1;i<=4;i++)
scanf("%lld",&d[i]);
scanf("%lld",&S);
ANS=dp[S];
dfs(1,0,0);
printf("%lld\n",ANS);
}
return 0;
}

●BZOJ 1042 [HAOI2008]硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  6. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  7. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  8. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

随机推荐

  1. mahony互补滤波器C编程

    //gx...分别为重力加速度在三个轴向的分力 由加速度计测得 //ax...分别为角速度在三个轴向的角速度 由陀螺仪测得 //最后得到最终滤波完毕的x.y.z方向的角度值(°) void IMUup ...

  2. jav音频格式转换 ffmpeg 微信录音amr转mp3

    项目背景: 之前公司开发了一个微信公众号,要求把js-sdk录音文件在web网页也能播放.众所周知,html的<audio>标签ogg,mp3,wav,也有所说苹果safari支持m4a格 ...

  3. 关于mule中Spring使用中的一个问题

    在mule中连接数据库时,大家通常喜欢使用spring的数据库连接以及bean的配置,但是在使用时会出现一些问题,即bean无法找到,这些,就是需要把bean的id属性改成name属性:可能是因为mu ...

  4. Java语言基础组成

    写完才发现,这个博客不提供目录这个功能,真是想骂爹了...... 目录 关键字 标识符 注释 常量和变量 运算符 语句 函数 数组 1.关键字 描述:刚刚开始学这个的时候,真是傻傻分不清楚,不过没关系 ...

  5. Node入门教程(7)第五章:node 模块化(下) npm与yarn详解

    Node的包管理器 JavaScript缺少包结构的定义,而CommonJS定义了一系列的规范.而NPM的出现则是为了在CommonJS规范的基础上,实现解决包的安装卸载,依赖管理,版本管理等问题. ...

  6. python之路--day15---软件开发目录规范

    软件开发目录规范 bin--启动文件 conf--配置文件 core--核心代码 db--数据文件 lib--常用功能代码 log--日志文件 readme--软件介绍

  7. NATAPP 内网映射,Visual Studio ,C# 实现本地开发微信公众号,本地调试无需服务器

    点击软件安装教程,根据安装教程,注册帐号,下载软件,配置软件.配置完后如下图,途中红色位置免费版本是随机的. 红色位置是自己的映射域名. 打开VS,并且打开项目,右键项目,在web 选项中修改项目UR ...

  8. HTTP请求到爬虫代码的终南捷径

    前阵子在做爬虫的时候学会了各种抓包,看到http请求的时候硬拼代码实在有点累. 后来发现Postman工具是直接可以把Postman请求直接生成对应的代码,这样一下来就美滋滋了. 那么最后的问题就成了 ...

  9. List集合就这么简单【源码剖析】

    前言 声明,本文用得是jdk1.8 前一篇已经讲了Collection的总览:Collection总览,介绍了一些基础知识. 现在这篇主要讲List集合的三个子类: ArrayList 底层数据结构是 ...

  10. kubernetes进阶(01)kubernetes的namespace

    一.Namespace概念 Namespace是对一组资源和对象的抽象集合,比如可以用来将系统内部的对象划分为不同的项目组或用户组. 常见的pods, services, replication co ...