[bzoj4850][Jsoi2016]灯塔
#include<iostream>
#include<cstdio>
#include<cmath>
#define getchar() (*S++)
#define MN 500000
#define INF 2000000000
char B[<<],*S=B;
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} int n,a[MN+],top,tail,q[MN+];
double F[MN+],G[MN+],sq[MN+];
inline int My_abs(int x){return x<?-x:x;}
double Get(int x,int y){return a[x]+sq[My_abs(y-x)];} int Calc(int x,int y)
{
int l=y,r=n,mid,ans=INF;
while(l<=r)
{
mid=l+r>>;
if(Get(y,mid)>=Get(x,mid)) ans=mid,r=mid-;
else l=mid+;
}
return ans;
} void Solve(double*f)
{
top=;tail=;
for(register int i=;i<=n;++i)
{
if(top<tail||a[i]>a[q[top]])
{
while(top>tail&&Calc(q[top],i)<=Calc(q[top-],q[top])) --top;
q[++top]=i;
}
while(top>tail&&Calc(q[tail],q[tail+])<=i) ++tail;
f[i]=Get(q[tail],i)-a[i];
}
} int main()
{
fread(B,,<<,stdin);
n=read();
for(int i=;i<=n;++i) sq[i]=sqrt(i);
for(int i=;i<=n;++i) a[i]=read();
Solve(F);
for(int i=;i<=n>>;++i) swap(a[i],a[n+-i]);
Solve(G);
for(int i=;i<=n;++i) printf("%d\n",max(,(int)ceil(max(F[i],G[n+-i]))));
return ;
}
[bzoj4850][Jsoi2016]灯塔的更多相关文章
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
- BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)
即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i ...
- [JSOI2016]灯塔
Description $JSOI$的国境线上有$N$一座连续的山峰,其中第$i$座的高度是$h_i$.为了简单起见,我们认为这$N$座山峰排成了连续一条直线. 如果在第$i$座山峰上建立一座高度 ...
- [BZOJ 4850][Jsoi2016]灯塔
传送门 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) ...
- DP学习记录Ⅱ
DP学习记录Ⅰ 以下为 DP 的优化. 人脑优化DP P5664 Emiya 家今天的饭 正难则反.考虑计算不合法方案.一个方案不合法一定存在一个主食,使得该主食在多于一半的方法中出现. 枚举这个&q ...
- 「JSOI2016」灯塔
「JSOI2016」灯塔 传送门 我们先只计算照亮左边的灯塔的最低高度,计算右边的类同,然后只要取 \(\max\) 就好了. 那么稍微整理一下式子:\(p_i \ge h_j - h_i + \sq ...
- loj2074 「JSOI2016」灯塔
loj 题面错的--去bzoj上看吧qwq 观察到 \(\sqrt{|i-j|}\) 的取值只有 \(\sqrt{n}\) 级别个,然后就很显然了,rmq. #include <iostream ...
- ACM/ICPC 之 快排+归并排序-记录顺序对(TSH OJ-LightHouse(灯塔))
TsingHua OJ 上不能使用<algorithm>头文件,因此需要手写快排(刚开始写的时候自己就出了很多问题....),另外本题需要在给横坐标排序后,需要记录纵坐标的顺序对的数量,因 ...
- 【Tsinghua OJ】灯塔(LightHouse)问题
描述 海上有许多灯塔,为过路船只照明.从平面上看,海域范围是[1, 10^8] × [1, 10^8] . (图一) 如图一所示,每个灯塔都配有一盏探照灯,照亮其东北.西南两个对顶的直角区域.探照灯的 ...
随机推荐
- nyoj n-1位数
n-1位数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的 ...
- SpringCloud的EurekaClient : 客户端应用访问注册的微服务(无断路器场景)
演示客户端应用如何访问注册在EurekaServer里的微服务 一.概念和定义 采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,2. ...
- Spring Security入门(3-1)Spring Security的登录页面定制
- 刨析Maven(对pom.xml配置文件常用标签的解析)
昨天在阿里云看到了一句话,"当你Learning和Trying之后,如果能尽量把Teaching也做好,会促进我们思考".共勉! 这是关于Maven的第三篇博客,这次我们深入了解p ...
- python——函数
python--函数 1.介绍: 在过去的十年间,大家广为熟知的编程方法无非两种:面向对象和面向过程,其实,无论哪种,都是一种编程的规范或者是如何编程的方法论.而如今,一种更为古老的编程方式:函数式编 ...
- jacascript JSON对象的学习
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! JSON (javascript object notation) 全称是 javascript 对象表示 ...
- hdu3342-判断有向图中是否存在(至少)3元环或回路-拓扑排序
一:题目大意: 给你一个关系图,判断是否合法, 每个人都有师父和徒弟,可以有很多个: 不合法: 1) . 互为师徒:(有回路) 2) .你的师父是你徒弟的徒弟,或者说你的徒弟是你师父的 ...
- React 深入系列3:Props 和 State
文:徐超,<React进阶之路>作者 授权发布,转载请注明作者及出处 React 深入系列3:Props 和 State React 深入系列,深入讲解了React中的重点概念.特性和模式 ...
- Linux OpenGL 实践篇-3 绘制三角形
本次实践是绘制两个三角形,重点理解顶点数组对象和OpenGL缓存的使用. 顶点数组对象 顶点数组对象负责管理一组顶点属性,顶点属性包括位置.法线.纹理坐标等. OpenGL缓存 OpenGL缓存实质上 ...
- [C#]设计模式-单例模式-创建型模式
单例模式用于在整个软件系统当中保持唯一实例,在 C# 当中最能够体现此概念的就是静态类,静态类的生命周期是跟随整个程序,并且在整个程序中仅保有一个实例. 不过在这里我们不再详细阐述单例模式与静态类有什 ...