Java 并发编程系列文章

Java 并发基础——线程安全性

Java 并发编程——Callable+Future+FutureTask

java 并发编程——Thread 源码重新学习

java并发编程——通过ReentrantLock,Condition实现银行存取款

Java并发编程——BlockingQueue

Java 并发编程——Executor框架和线程池原理


java.util.concurrent.locks包为锁和等待条件提供一个框架的接口和类,它不同于内置同步和监视器。该框架允许更灵活地使用锁和条件,但以更难用的语法为代价。

Lock 接口支持那些语义不同(重入、公平等)的锁规则,可以在非阻塞式结构的上下文(包括 hand-over-hand 和锁重排算法)中使用这些规则。主要的实现是 ReentrantLock。

ReadWriteLock 接口以类似方式定义了一些读取者可以共享而写入者独占的锁。此包只提供了一个实现,即 ReentrantReadWriteLock,因为它适用于大部分的标准用法上下文。但程序员可以创建自己的、适用于非标准要求的实现。

  以下是locks包的相关类图:

在之前我们同步一段代码或者对象时都是使用 synchronized关键字,使用的是Java语言的内置特性,然而 synchronized的特性也导致了很多场景下出现问题,比如:

在一段同步资源上,首先线程A获得了该资源的锁,并开始执行,此时其他想要操作此资源的线程就必须等待。如果线程A因为某些原因而处于长时间操作的状态,比如等待网络,反复重试等等。那么其他线程就没有办法及时的处理它们的任务,只能无限制的等待下去。如果线程A的锁在持有一段时间后可自动被释放,那么其他线程不就可以使用该资源了吗?再有就是类似于数据库中的共享锁与排它锁,是否也可以应用到应用程序中?所以引入Lock机制就可以很好的解决这些问题。

  Lock提供了比 synchronized更多的功能。但是要注意以下几点:

  1. Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

  2. Lock和synchronized有一点非常大的不同,采用 synchronized不需要用户去手动释放锁,当synchronized方法或者 synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而 Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

  3. synchronized无法判断是否获取锁的状态,Lock可以判断是否获取到锁;

  4. 用synchronized关键字的两个线程1和线程2,如果当前线程1获得锁,线程2线程等待。如果线程1阻塞,线程2则会一直等待下去,而Lock锁就不一定会等待下去,如果尝试获取不到锁,线程可以不用一直等待就结束了;

总结: synchronized的锁可重入、不可中断、非公平,而Lock锁可重入、可判断、可公平(两者皆可)

一、可重入锁 ReentrantLock

  想到锁我们一般想到的是同步锁即 Synchronized,这里介绍的可重入锁ReentrantLock的效率更高。IBM对于可重入锁进行了一个介绍:JDK 5.0 中更灵活、更具可伸缩性的锁定机制

  这里简单介绍下可重入锁的分类:(假设线程A获取了锁,现在A执行完成了,释放了锁同时唤醒了正在等待被唤醒的线程B。但是,A执行唤醒操作到B真正获取锁的时间里可能存在线程C已经获取了锁,造成正在排队等待的B无法获得锁)

  1) 公平锁:

     由于B先在等待被唤醒,为了保证公平性原则,公平锁会先让B获得锁。

  2) 非公平锁

     不保证B先获取到锁对象。

  这两种锁只要在构造ReentrantLock对象时加以区分就可以了,当参数设置为true时为公平锁,false时为非公平锁,同时默认构造函数也是创建了一个非公平锁。

    private Lock lock = new ReentrantLock(true);

ReentrantLock的公平锁在性能和实效性上作了很大的牺牲,可以参考IBM上发的那篇文章中的说明。

二、条件变量 Condition

  Condition是java.util.concurrent.locks包下的一个接口,  Condition 接口描述了可能会与锁有关联的条件变量。这些变量在用法上与使用 Object.wait 访问的隐式监视器类似,但提供了更强大的功能。需要特别指出的是,单个 Lock 可能与多个 Condition 对象关联。为了避免兼容性问题,Condition 方法的名称与对应的 Object 版本中的不同。

Condition 将 Object 监视器方法(wait、notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set(wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。

  Condition(也称为条件队列 或条件变量)为线程提供了一种手段,在某个状态条件下直到接到另一个线程的通知,一直处于挂起状态(即“等待”)。因为访问此共享状态信息发生在不同的线程中,所以它必须受到保护,因此要将某种形式的锁与 Condition相关联。

Condition 实例实质上被绑定到一个锁上。

  Condition是在java .5中才出现的,它用来替代传统的Object的wait()、notify()实现线程间的协作,相比使用Object的wait()、notify(),
使用Condition的await()、signal()这种方式实现线程间协作更加安全和高效。
因此通常来说比较推荐使用Condition,阻塞队列实际上是使用了Condition来模拟线程间协作。 Condition是个接口,基本的方法就是await()和signal()方法;
Condition依赖于Lock接口,生成一个Condition的基本代码是lock.newCondition()
调用Condition的await()和signal()方法,都必须在lock保护之内,就是说必须在lock.lock()和lock.unlock之间才可以使用
  Conditon中的await()对应Object的wait();
  Condition中的signal()对应Object的notify();
  Condition中的signalAll()对应Object的notifyAll()。

通过condition进程线程通信的例子如下:

public class ConsumerAndProducer {
final Lock lock = new ReentrantLock();
final Condition condition = lock.newCondition(); public static void main(String[] args) {
// TODO Auto-generated method stub
ConsumerAndProducer test = new ConsumerAndProducer();
Producer producer = test.new Producer("producer");
Consumer consumer = test.new Consumer("Consumer"); consumer.start();
producer.start();
} class Consumer extends Thread { public Consumer(String name) {
super(name);
} @Override
public void run() {
consume();
} private void consume() { try {
System.out.println("Consumer: run.");
lock.lock();
System.out.println("Consumer: 我在等一个新信号" + this.currentThread().getName());
Thread.sleep(5000);
condition.await();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
System.out.println("Consumer: 拿到一个信号" + this.currentThread().getName());
lock.unlock();
} }
} class Producer extends Thread { public Producer(String name) {
super(name);
} @Override
public void run() {
produce();
} private void produce() {
try {
System.out.println("Producer run.");
lock.lock();
System.out.println("Producer: 我拿到锁" + this.currentThread().getName());
condition.signalAll();
System.out.println("Producer: 我发出了一个信号:" + this.currentThread().getName());
} finally {
lock.unlock();
}
}
}
}

输出:

Consumer: run.
Consumer: 我在等一个新信号Consumer
Producer run.
Producer: 我拿到锁producer
Producer: 我发出了一个信号:producer
Consumer: 拿到一个信号Consumer 

三、ReentrantLock和Condition设计多线程存取款

1. 存款的时候,不能有线程在取款 。取款的时候,不能有线程在存款。

2. 取款时,余额大于取款金额才能进行取款操作,否则提示余额不足。

3.  当取款时,如果金额不足,则阻塞当前线程,并等待2s(可能有其他线程将钱存入)。

如果2s之内没有其它线程完成存款,或者还是金额不足则打印金额不足。

如果其它存入足够金额则通知该阻塞线程,并完成取款操作。

/**
* 普通银行账户,不可透支
*/
public class MyCount {
private String oid; // 账号
private int cash; // 账户余额
//账户锁,这里采用公平锁,挂起的取款线程优先获得锁,而不是让其它存取款线程获得锁
private Lock lock = new ReentrantLock(true);
private Condition _save = lock.newCondition(); // 存款条件
private Condition _draw = lock.newCondition(); // 取款条件 MyCount(String oid, int cash) {
this.oid = oid;
this.cash = cash;
} /**
* 存款
* @param x 操作金额
* @param name 操作人
*/
public void saving(int x, String name) {
lock.lock(); // 获取锁
if (x > 0) {
cash += x; // 存款
System.out.println(name + "存款" + x + ",当前余额为" + cash);
}
_draw.signalAll(); // 唤醒所有等待线程。
lock.unlock(); // 释放锁
} /**
* 取款
* @param x 操作金额
* @param name 操作人
*/
public void drawing(int x, String name) {
lock.lock(); // 获取锁
try {
if (cash - x < 0) {
System.out.println(name + "阻塞中");
_draw.await(2000,TimeUnit.MILLISECONDS); // 阻塞取款操作, await之后就隐示自动释放了lock,直到被唤醒自动获取
}
if(cash-x>=0){
cash -= x; // 取款
System.out.println(name + "取款" + x + ",当前余额为" + cash);
}else{
System.out.println(name+" 余额不足,当前余额为 "+cash+" 取款金额为 "+x);
}
// 唤醒所有存款操作,这里并没有什么实际作用,因为存款代码中没有阻塞的操作
_save.signalAll();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock(); // 释放锁
}
}
}

这里的可重入锁也可以设置成非公平锁,这样阻塞取款线程可能后与其它存取款操作。

 /**
* 存款线程类
*/
static class SaveThread extends Thread {
private String name; // 操作人
private MyCount myCount; // 账户
private int x; // 存款金额 SaveThread(String name, MyCount myCount, int x) {
this.name = name;
this.myCount = myCount;
this.x = x;
} public void run() {
myCount.saving(x, name);
}
} /**
* 取款线程类
*/
static class DrawThread extends Thread {
private String name; // 操作人
private MyCount myCount; // 账户
private int x; // 存款金额 DrawThread(String name, MyCount myCount, int x) {
this.name = name;
this.myCount = myCount;
this.x = x;
} public void run() {
myCount.drawing(x, name);
}
} public static void main(String[] args) {
// 创建并发访问的账户
MyCount myCount = new MyCount("95599200901215522", 1000);
// 创建一个线程池
ExecutorService pool = Executors.newFixedThreadPool(3);
Thread t1 = new SaveThread("S1", myCount, 100);
Thread t2 = new SaveThread("S2", myCount, 1000);
Thread t3 = new DrawThread("D1", myCount, 12600);
Thread t4 = new SaveThread("S3", myCount, 600);
Thread t5 = new DrawThread("D2", myCount, 2300);
Thread t6 = new DrawThread("D3", myCount, 1800);
Thread t7 = new SaveThread("S4", myCount, 200);
// 执行各个线程
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
pool.execute(t6);
pool.execute(t7); try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 关闭线程池
pool.shutdown();
}
}

上述类中定义了多个存取款的线程,执行结果如下:

S1存款100,当前余额为1100
S3存款600,当前余额为1700
D2阻塞中
S2存款1000,当前余额为2700
D2取款2300,当前余额为400
D3阻塞中
S4存款200,当前余额为600
D3 余额不足,当前余额为 600 取款金额为 1800
D1阻塞中
D1 余额不足,当前余额为 600 取款金额为 12600

执行步骤如下:

  1. 初始化账户,有余额100。
  2. S1,S3完成存款。
  3. D2取款,余额不足,释放锁并阻塞线程,进入等待队列中。
  4. S2完成存款操作后,会唤醒挂起的线程,这时D2完成了取款。
  5. D3取款,余额不足,释放锁并阻塞线程,进入等待队列中。
  6. S4完成存款操作后,唤醒D3,但是依然余额不足,D3 取款失败。
  7. D1 进行取款,等待2s钟,无任何线程将其唤醒,取款失败。

这里需要注意的是,当Condition调用await()方法时,当前线程会释放锁(否则就和Sychnize就没有区别了)

将银行账户中的 锁改成非公平锁时,执行的结果如下:

1存款100,当前余额为1100
S3存款600,当前余额为1700
D2阻塞中
S2存款1000,当前余额为2700
D3取款1800,当前余额为900
D2 余额不足,当前余额为 900 取款金额为 2300
S4存款200,当前余额为1100
D1阻塞中
D1 余额不足,当前余额为 1100 取款金额为 12600

D2 取款出现余额不足后释放锁,进入等待状态。但是当S2线程完成存款后并没有立刻执行D2线程,而是被D3插队了。

通过执行结果可以看出 公平锁和非公平锁的区别,公平锁能保证等待线程优先执行,但是非公平锁可能会被其它线程插队。

四、ArrayBlockingQueue中关于ReentrantLock和Condition的应用

JDK源码中关于可重入锁的非常典型的应用是 BlockingQueue,从它的源码中的成员变量大概就能知道了(ArrayBlockingQueue为例):

 /** The queued items */
final Object[] items; /** items index for next take, poll, peek or remove */
int takeIndex; /** items index for next put, offer, or add */
int putIndex; /** Number of elements in the queue */
int count; /*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/ /** Main lock guarding all access */
    // 主要解决多线程访问的线程安全性问题
final ReentrantLock lock; /** Condition for waiting takes */
    // 添加元素时,通过notEmpty 唤醒消费线程(在等待该条件)
private final Condition notEmpty; /** Condition for waiting puts */
    // 删除元素时,通过 notFull 唤醒生成线程(在等待该条件)
private final Condition notFull;

ArrayBlockingQueue 是一个典型的生产者消费者模型,通过一个数组保存元素。为了保证添加和删除元素的线程安全性,增加了可重入锁和条件变量。

可重入锁主要保证多线程对阻塞队列的操作是线程安全的,同时为了让被阻塞的消费者或者生产者能够被自动唤醒,这里引入了条件变量。

当队列已满时,Producer会被阻塞,此时如果Customer消费一个元素时,被阻塞的Producer就会被自动唤醒并往队列中添加元素。

上面的两个例子可见java.util.concurrent.locks包下的ReentrantLock和Condition配合起来的灵活性及实用性。

参考:

可重入锁介绍:https://blog.csdn.net/yanyan19880509/article/details/52345422

https://www.cnblogs.com/nullllun/p/9004309.html

IBM关于Lock介绍:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html

http://286.iteye.com/blog/2296249

java并发编程——通过ReentrantLock,Condition实现银行存取款的更多相关文章

  1. 【java并发编程】Lock & Condition 协调同步生产消费

    一.协调生产/消费的需求 本文内容主要想向大家介绍一下Lock结合Condition的使用方法,为了更好的理解Lock锁与Condition锁信号,我们来手写一个ArrayBlockingQueue. ...

  2. Java并发编程基础-ReentrantLock的机制

    同步锁: 我们知道,锁是用来控制多个线程访问共享资源的方式,一般来说,一个锁能够防止多个线程同时访问共享资源,在Lock接口出现之前,Java应用程序只能依靠synchronized关键字来实现同步锁 ...

  3. java并发编程基础-ReentrantLock及LinkedBlockingQueue源码分析

    ReentrantLock是一个较为常用的锁对象.在上次分析的uil开源项目中也多次被用到,下面谈谈其概念和基本使用. 概念 一个可重入的互斥锁定 Lock,它具有与使用 synchronized 相 ...

  4. 【java并发编程】ReentrantLock 可重入读写锁

    目录 一.ReentrantLock可重入锁 二.ReentrantReadWriteLock读写锁 三.读锁之间不互斥 欢迎关注我的博客,更多精品知识合集 一.ReentrantLock可重入锁 可 ...

  5. Java 并发编程:Callable和Future

    项目中经常有些任务需要异步(提交到线程池中)去执行,而主线程往往需要知道异步执行产生的结果,这时我们要怎么做呢?用runnable是无法实现的,我们需要用callable实现. import java ...

  6. Java 并发编程——Executor框架和线程池原理

    Eexecutor作为灵活且强大的异步执行框架,其支持多种不同类型的任务执行策略,提供了一种标准的方法将任务的提交过程和执行过程解耦开发,基于生产者-消费者模式,其提交任务的线程相当于生产者,执行任务 ...

  7. Java并发编程——BlockingQueue

    简介 BlockingQueue很好的解决了多线程中,如何高效安全"传输"数据的问题.通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利. 阻塞队列是 ...

  8. Java 并发编程——Callable+Future+FutureTask

    Java 并发编程系列文章 Java 并发基础——线程安全性 Java 并发编程——Callable+Future+FutureTask java 并发编程——Thread 源码重新学习 java并发 ...

  9. java 并发编程——Thread 源码重新学习

    Java 并发编程系列文章 Java 并发基础——线程安全性 Java 并发编程——Callable+Future+FutureTask java 并发编程——Thread 源码重新学习 java并发 ...

随机推荐

  1. Hessian源码分析--HessianServlet

    Hessian可以通过Servlet来对外暴露服务,HessianServlet继承于HttpServlet,但这仅仅是一个外壳,使用web服务器来提供对外的Http请求,在web.xml中我们会进行 ...

  2. hive支持in用法是从0.3.2版本后

    写hive 用in 如分时段,分类型,分平台统计点击量 select substr(createtime,12,2) hour,logtype,os_id,count(*)  from  wizad_ ...

  3. 学生信息管理小系统(以XML为存储方式)

    为了更好地应用XML,就写了这个小项目. 下面是我的项目的目录结构 项目思路 dao是Date Access Object 数据访问层,主要是负责操作数据 domain是实体层,类似于bean层,放置 ...

  4. JSP标签JSTL(5)--常用的标签函数

    在使用JSTL的标签函数的时候请务必加上如下代码 <!-- 添加jsp标签的核心库 --> <%@ taglib uri="http://java.sun.com/jsp/ ...

  5. Android官方命令深入分析之绘制9-patch

    9-patch是一个所见即所得的编辑器,允许你创建可以自动更改大小适应屏幕的bitmap图像.被选中的部分可以水平或垂直的进行缩放. 下面是使用9-patch工具创建一个9-patch图像的实例,首先 ...

  6. 【一天一道LeetCode】#88. Merge Sorted Array

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...

  7. Leetcode_119_Pascal's Triangle II

    本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/41851069 Given an index k, retu ...

  8. (三十八)从私人通讯录引出的细节II -数据逆传 -tableView点击 -自定义分割线

    项目中的警告是不会影响app发布的,例如引入第三方类库很容易引入警告. 细节1:跳转的数据传递. prepareForSegue: sender: 方法是在执行segue后,跳转之前调用这个方法,一般 ...

  9. Android重命名包名

    工程写的差不多了才发现原来用的包名还是自己尝试性的进行写代码的时候用到的.但apk的发布,google map api的申请等等方面都需要用到一个比较规范的包名.这就涉及到修改包名的问题. 包名一开始 ...

  10. Android 利用WebViewJavascriptBridge 实现js和java的交互(一)

    此文出自:http://blog.csdn.net/sk719887916/article/details/47189607,skay 按安卓开发目前现状来说,开发者大部分时间还是花在UI的屏幕适配上 ...