[HNOI2013]切糕
题目描述
网址:https://daniu.luogu.org/problemnew/show/3227
大意:
平面上有一长方体,目标为将其切割为上下两半。
切割点为\((x,y,z)\)的点,每个点有一个不和谐值v,现在有两个要求:
- [1]任何两个平面相邻的切割点之间的高度差不能超过D
- [2]要使得最终的不和谐值最小。
求解最小的$ ∑vi $
题目解法
直接建图,化点为边。将最下面的点与S相连,最上面的与T相连。
然后跑最小割即为答案。
现在关键在于如何限制高度差不超过D。
以\((x,y,z)\)与\((x+1,y,z)\)为例。
建立\((x,y,z) —>(x+1,y,z-D)\) 与 \((x+1,y,z+D+1)—>(x,y,z+1)\)两条边
那么在割断\((x,y,z)->(x,y,z+1)\)时,就可保证\((x+1,y)\)上割的为题目所限制范围。
动手画一下就明白了。 如果割超出范围的边,S、T依旧联通。
所以用上述方法建图,然后跑最小割即可得到答案。
实现代码
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define ll long long
#define RG register
#define IL inline
#define maxn 125000
#define INF 1e16+7
using namespace std;
IL ll gi(){
RG ll date = 0, m = 1; RG char ch = 0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch = getchar();
if(ch == '-'){m = -1; ch = getchar();}
while(ch>='0' && ch<='9')
{date=date*10+ch-'0'; ch = getchar();}
return date*m;
}
ll cnt,Q,P,R,S,T,D;
ll vis[maxn],dep[maxn],head[maxn],cur[maxn];
ll mx[4] = {0,0,-1,1},my[4] = {-1,1,0,0};
struct Road { ll to,next,cap,flow; }t[20*maxn];
IL bool Bfs(){
for(RG ll i = 0; i <= T; i ++)vis[i] = 0;
dep[S] = 0; vis[S] = 1; queue<ll>Que; Que.push(S);
while(!Que.empty()){
RG ll u = Que.front(); Que.pop();
for(RG ll i = head[u]; i!= -1; i = t[i].next){
RG ll v = t[i].to;
if(!vis[v] && t[i].cap > t[i].flow){
dep[v] = dep[u] + 1;
vis[v] = true; Que.push(v);
}
}
}return vis[T];
}
int Dfs(RG ll u,RG ll Lim){
if(u == T || Lim == 0)return Lim;
RG ll flow =0,f = 0;
for(RG ll &i = cur[u]; i != -1; i = t[i].next){
RG ll v = t[i].to;
if(dep[v] == dep[u] + 1 && (f = Dfs(v,min(Lim,t[i].cap-t[i].flow))) > 0){
flow += f; Lim -= f;
t[i].flow += f; t[(i^1)].flow -= f;
if(Lim == 0)break;
}
}return flow;
}
IL int Dinic(){
RG ll Flow = 0;
while(Bfs()){
for(RG ll i = 0; i <= T; i ++)cur[i] = head[i];
Flow += Dfs(S,INF);
}return Flow;
}
IL ll Cod(RG ll z,RG ll x,RG ll y){
return z*(P*Q) + (x-1)*Q + y;
}
IL void Add(ll uu,ll vv,ll cc){
t[cnt++] = (Road){vv,head[uu],cc,0}; head[uu] = cnt - 1;
t[cnt++] = (Road){uu,head[vv],0,0}; head[vv] = cnt - 1;
}
int main(){
freopen("testdate.in","r",stdin);
P = gi(); Q = gi(); R = gi(); D = gi();
S = 0; T = R*P*Q+P*Q+1;
for(RG ll i = 0; i <= T; i ++)head[i] = -1;
for(RG ll h = 1; h <= R; h ++)
for(RG ll i = 1; i <= P; i ++)
for(RG ll j = 1; j <= Q; j ++)
Add( Cod(h,i,j) , Cod(h-1,i,j) , gi());
for(RG ll i = 1; i <= P; i ++)
for(RG ll j = 1; j <= Q; j ++)
Add(Cod(0,i,j),T,INF);
for(RG ll i = 1; i <= P; i ++)
for(RG ll j = 1; j <= Q; j ++)
Add(S,Cod(R,i,j),INF);
for(RG ll h = 1; h <= R; h ++)
for(RG ll i = 1; i <= P; i ++)
for(RG ll j = 1; j <= Q; j ++)
for(RG ll f = 0; f < 4; f ++){
RG int x = mx[f]+i,y = my[f]+j;
if(x<1||y<1||x>P||y>Q)continue;
if(h-D>=0)Add(Cod(h-D,x,y),Cod(h,i,j),INF);
if(h+D<=R)Add(Cod(h,i,j),Cod(h+D,x,y),INF);
}
RG ll Ans = Dinic(); printf("%lld",Ans);
return 0;
}
[HNOI2013]切糕的更多相关文章
- BZOJ 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1495 Solved: 819[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- BZOJ_3144_[Hnoi2013]切糕_最小割
BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...
- bzoj千题计划142:bzoj3144: [Hnoi2013]切糕
http://www.lydsy.com/JudgeOnline/problem.php?id=3144 如果D=2 ,两个点,高度为4,建图如下 #include<queue> #inc ...
- 【BZOJ3144】[HNOI2013]切糕
[BZOJ3144][HNOI2013]切糕 题面 题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑 ...
- 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1764 Solved: 965 Description Inp ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1526 Solved: 827[Submit][Status] ...
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
随机推荐
- docker dead but pid file exists
CentOS 6安装docker 报docker dead but pid file exists 执行 yum install epel-release yum install docker-io ...
- 【Tools】Pycharm 2018专业版 linux安装教程 附2018专业版密钥
Linux安装pycharm2018专业版 1. 下载安装包 Pycharm下载地址:http://www.jetbrains.com/pycharm/download/ 2.终端打开你的安装包所在路 ...
- Java String使用总结
1 == 与 equals() 使用==来比较两个primitive主数据类型在意义上相等(是否带有相同的字节组合),或者判断两个引用(如String变量)是否引用同一个对象.使用equals()来判 ...
- C++ 11 左值,右值,左值引用,右值引用,std::move, std::foward
这篇文章要介绍的内容和标题一致,关于C++ 11中的这几个特性网上介绍的文章很多,看了一些之后想把几个比较关键的点总结记录一下,文章比较长.给出了很多代码示例,都是编译运行测试过的,希望能用这些帮助理 ...
- Ubuntu忘记root密码怎么办?
http://www.linuxidc.com/Linux/2016-05/131256.htm
- MysqL自动提交机制的关闭
MysqL在执行一句数据库操作命令的时候,通常都是自动提交的.常用引擎下有两种,分别是MyIsam和InnoDB,MyIsam是不支持事务处理的,但InnoDB支持,但InnoDB在不开启事务处理的情 ...
- Java数字签名——ECDSA算法
ECDSA 例如微软产品的序列号的验证算法. Elliptic Curve Digital Signature Algorithm,椭圆曲线数字签名算法. 速度快,强度高,签名短 —————————— ...
- 2道acm简单题(2013):1.(时分秒)时间相减;2.主持人和N-1个人玩游戏,每个人说出自己认识的人数,判断其中是否有人说谎。
/*1.题目:输入一个数,代表要检测的例子的个数,每个例子中:输入两个时间(格式HH:MM : SS),前面时间减去后面时间,输出在时钟上显示的时间,格式一样,如果是以为数字的前面补零.*//**思路 ...
- HDU - 2160 递推
思路:dp(i)表示第i天的猪的数量,g(i)表示第i天新出生的猪的数量,d(i) = d(i-1) * 2 - g(i-2), g(i) = d(i-1) AC代码 #include <cst ...
- SpringBoot CGLIB AOP解决Spring事务,对象调用自己方法事务失效.
对于像我这种喜欢滥用AOP的程序员,遇到坑也是习惯了,不仅仅是事务,其实只要脱离了Spring容器管理的所有对象,对于SpringAOP的注解都会失效,因为他们不是Spring容器的代理类,Sprin ...