Sol

一个很显然的暴力,设\(f[i]\)表示选到\(i\)的最优效率

每次枚举一段不与前面连续的长度小于\(k\)的区间转移来

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k;
ll f[_], sum[_]; int main(RG int argc, RG char* argv[]){
n = Input(); k = Input();
for(RG int i = 1; i <= n; ++i) f[i] = Input(), sum[i] = sum[i - 1] + f[i];
for(RG int i = 2; i <= n; ++i)
for(RG int j = max(0, i - k); j < i; ++j)
f[i] = max(f[i], f[j - 1] + sum[i] - sum[j]);
printf("%lld\n", f[n]);
return 0;
}

把转移中的\(f[j-1]\)和\(sum[j]\)写在一起就可以单调队列优化

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k;
ll f[_], g[_], sum[_], Q[_], head, tail = 1; int main(RG int argc, RG char* argv[]){
n = Input(); k = Input();
for(RG int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + Input();
Q[0] = -1; g[0] -= sum[1];
for(RG int i = 1; i <= n; ++i){
while(i - Q[head] - 1 > k) ++head;
f[i] = (Q[head] == -1 ? 0 : g[Q[head]]) + sum[i], g[i] = f[i] - sum[i + 1];
while(head <= tail && g[Q[tail]] < g[i]) --tail;
Q[++tail] = i;
}
printf("%lld\n", f[n]);
return 0;
}

Bzoj2442:修剪草坪的更多相关文章

  1. bzoj2442 修剪草坪——单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 设 f[i] 为答案,则有 f[i] = max { f[j] - s[j+1] } ...

  2. BZOJ2442: [Usaco2011 Open]修剪草坪

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 500  Solved: 244[Submit][ ...

  3. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  4. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  5. usaco 购买饲料 && 修剪草坪

    购买饲料 Description 如约翰在镇上,沿着公路开车回家,他的家离起点有E公里.他顺便准备买K吨饲料回家.运送饲料是要花油钱的,如果他的车上有X吨饲料,行驶一公里需要X^2元,行驶D公里就 需 ...

  6. BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )

    dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...

  7. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  8. P2627 修剪草坪

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  9. 洛谷 P2627 修剪草坪 题解

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  10. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

随机推荐

  1. Angular+ionic2+Echarts 实现图形制作,以饼图为例

    step1:添加插件echart; npm install echarts --save package.json文件中会在dependencies中添加echarts,如下图: step2:运行cm ...

  2. [翻译] 编写高性能 .NET 代码--第二章 GC -- 将长生命周期对象和大对象池化

    将长生命周期对象和大对象池化 请记住最开始说的原则:对象要么立即回收要么一直存在.它们要么在0代被回收,要么在2代里一直存在.有些对象本质是静态的,生命周期从它们被创建开始,到程序停止才会结束.其它对 ...

  3. Android 文字过长TextView如何自动截断并显示成省略号

    当用TextView来显示标题的时候,如果标题内容过长的话,我们不希望其换行显示,这时候我们需要其自动截断,超过的部分显示成省略号. 如下图所示,标题过长,自动换行了,显示不是很好看. 这时候我们需要 ...

  4. mysql 学习心得5

    常用函数 字符串函数 concat(S1,S2....,Sn) 链接s1 s2 ...... 任何字符串和null链接显示为null insert(str,x,y,instr)  将str从x位开始y ...

  5. 算法提高 P1001

    必须感叹下,大数模板就是好用! AC代码: #include <cstdio> #include <cmath> #include <algorithm> #inc ...

  6. docker mysql 主从复制

    当然首先 docker pull mysql mkdir /usr/local/mysqlData/master/cnf mkdir /usr/local/mysqlData/master/data ...

  7. javascript类型判断方法

    判断javascript中的类型,共有四种常用的方法 var a=6; var b="str"; var c=true; var arr=[]; typeof 用于基本类型的判断 ...

  8. H3C无线路由器安装与设置

    一.电脑与路由器的连接利用一根cat5e网线一头连接到电脑上笔记本或台式机都可以,另一头连接到无线路由器的LAN口任意LAN口都可以二.设置无线路由器完成路由器安装与电脑连接后,接下首次使用就需要设置 ...

  9. R实战 第三篇:数据处理(基础)

    数据结构用于存储数据,不同的数据结构对应不同的操作方法,对应不同的分析目的,应选择合适的数据结构.在处理数据时,为了便于检查数据对象,可以通过函数attributes(x)来查看数据对象的属性,str ...

  10. ORACLE关于段的HEADER_BLOCK的一点浅析

    在学习段(segment).区间(extent)时,对段的HEADER_BLOCK有一些疑问,本文记录一下探究的实验过程以及相关总结,,如有不对的地方,敬请指出.以SCOTT.EMP表为例(下面测试环 ...