hash_ring

# -*- coding: utf-8 -*-
"""
hash_ring
~~~~~~~~~~~~~~
Implements consistent hashing that can be used when
the number of server nodes can increase or decrease (like in memcached). Consistent hashing is a scheme that provides a hash table functionality
in a way that the adding or removing of one slot
does not significantly change the mapping of keys to slots. More information about consistent hashing can be read in these articles: "Web Caching with Consistent Hashing":
http://www8.org/w8-papers/2a-webserver/caching/paper2.html "Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the World Wide Web (1997)":
http://citeseerx.ist.psu.edu/legacymapper?did=38148 Example of usage:: memcache_servers = ['192.168.0.246:11212',
'192.168.0.247:11212',
'192.168.0.249:11212'] ring = HashRing(memcache_servers)
server = ring.get_node('my_key') :copyright: 2008 by Amir Salihefendic.
:license: BSD
""" import math
import sys
from bisect import bisect if sys.version_info >= (2, 5):
import hashlib
md5_constructor = hashlib.md5
else:
import md5
md5_constructor = md5.new class HashRing(object): def __init__(self, nodes=None, weights=None):
"""`nodes` is a list of objects that have a proper __str__ representation.
`weights` is dictionary that sets weights to the nodes. The default
weight is that all nodes are equal.
"""
self.ring = dict()
self._sorted_keys = [] self.nodes = nodes if not weights:
weights = {}
self.weights = weights self._generate_circle() def _generate_circle(self):
"""Generates the circle.
"""
total_weight = 0
for node in self.nodes:
total_weight += self.weights.get(node, 1) for node in self.nodes:
weight = 1 if node in self.weights:
weight = self.weights.get(node) factor = math.floor((40*len(self.nodes)*weight) / total_weight); for j in range(0, int(factor)):
b_key = self._hash_digest( '%s-%s' % (node, j) ) for i in range(0, 3):
key = self._hash_val(b_key, lambda x: x+i*4)
self.ring[key] = node
self._sorted_keys.append(key) self._sorted_keys.sort() def get_node(self, string_key):
"""Given a string key a corresponding node in the hash ring is returned. If the hash ring is empty, `None` is returned.
"""
pos = self.get_node_pos(string_key)
if pos is None:
return None
return self.ring[ self._sorted_keys[pos] ] def get_node_pos(self, string_key):
"""Given a string key a corresponding node in the hash ring is returned
along with it's position in the ring. If the hash ring is empty, (`None`, `None`) is returned.
"""
if not self.ring:
return None key = self.gen_key(string_key) nodes = self._sorted_keys
pos = bisect(nodes, key) if pos == len(nodes):
return 0
else:
return pos def iterate_nodes(self, string_key, distinct=True):
"""Given a string key it returns the nodes as a generator that can hold the key. The generator iterates one time through the ring
starting at the correct position. if `distinct` is set, then the nodes returned will be unique,
i.e. no virtual copies will be returned.
"""
if not self.ring:
yield None, None returned_values = set()
def distinct_filter(value):
if str(value) not in returned_values:
returned_values.add(str(value))
return value pos = self.get_node_pos(string_key)
for key in self._sorted_keys[pos:]:
val = distinct_filter(self.ring[key])
if val:
yield val for i, key in enumerate(self._sorted_keys):
if i < pos:
val = distinct_filter(self.ring[key])
if val:
yield val def gen_key(self, key):
"""Given a string key it returns a long value,
this long value represents a place on the hash ring. md5 is currently used because it mixes well.
"""
b_key = self._hash_digest(key)
return self._hash_val(b_key, lambda x: x) def _hash_val(self, b_key, entry_fn):
return (( b_key[entry_fn(3)] << 24)
|(b_key[entry_fn(2)] << 16)
|(b_key[entry_fn(1)] << 8)
| b_key[entry_fn(0)] ) def _hash_digest(self, key):
m = md5_constructor()
m.update(bytes(key,encoding='utf-8'))
#return map(ord, m.digest())
return list(m.digest()) '''
memcache_servers = ['192.168.0.246:11212',
'192.168.0.247:11212',
'192.168.0.249:11212'] ring = HashRing(memcache_servers)
server = ring.get_node('my_key')
''' # 增加权重 memcache_servers = ['192.168.0.246:11212',
'192.168.0.247:11212',
'192.168.0.249:11212']
weights = {
'192.168.0.246:11212': 1,
'192.168.0.247:11212': 2,
'192.168.0.249:11212': 1
} ring = HashRing(memcache_servers, weights)
server = ring.get_node('my_key')
print(server)

增加删除机器时有可能数据找不到

python 一致性哈希 分布式的更多相关文章

  1. php实现一致性哈希算法

    <?php//原理概念请看我的上一篇随笔(http://www.cnblogs.com/tujia/p/5416614.html)或直接百度 /** * 接口:hash(哈希插口).distri ...

  2. 7月目标 socket , 一致性哈希算法 ; mongodb分片; 分布式消息队列; 中间件的使用场景

      分布式的基础:一致性哈希  路由算法的一致性hash http://www.jiacheo.org/blog/174 http://www.tuicool.com/articles/vQVbmai ...

  3. Tornado 自定义session,与一致性哈希 ,基于redis 构建分布式 session框架

    Tornado 自定义session,与一致性哈希 ,基于redis 构建分布式 session import tornado.ioloop import tornado.web from myhas ...

  4. 分布式_理论_08_Consistent Hash(一致性哈希算法)

    一.前言 五.参考资料 1.分布式理论(八)—— Consistent Hash(一致性哈希算法)

  5. memcached分布式一致性哈希算法

    <span style="font-family: FangSong_GB2312; background-color: rgb(255, 255, 255);">如果 ...

  6. .net的一致性哈希实现

    最近在项目的微服务架构推进过程中,一个新的服务需要动态伸缩的弹性部署,所有容器化示例组成一个大的工作集群,以分布式处理的方式来完成一项工作,在集群中所有节点的任务分配过程中,由于集群工作节点需要动态增 ...

  7. 一致性哈希算法与Java实现

    原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...

  8. 五分钟理解一致性哈希算法(consistent hashing)

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法 ...

  9. 每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...

随机推荐

  1. Python Web-第四周-Programs that Surf the Web(Using Python to Access Web Data)

    1.Understanding HTML 1.最简单的爬虫 import urllib fhand=urllib.urlopen('http://www.dr-chuck.com/page1.htm' ...

  2. SDP(11):MongoDB-Engine功能实现

    根据上篇关于MongoDB-Engine的功能设计方案,我们将在这篇讨论里进行功能实现和测试.下面是具体的功能实现代码:基本上是直接调用Mongo-scala的对应函数,需要注意的是java类型和sc ...

  3. jquery的动画学习--jquery权威指南

        前面的fadeIn和fadeOut还有fadeTo以及sildeToggle还有sildeUp\sildeDown还有toggle还有show.hide等都经常用,就不再手写了,需要注意的是f ...

  4. Weex 初探

    Weex 初探 Weex 介绍 Weex 是阿里于 2016 年开源的一款开发框架,它的介绍是: Weex 是一个使用 Web 开发体验来开发高性能原生应用的框架. 它使用了 Web 技术来开发 An ...

  5. SPOJ3267:D-query

    题面 SPOJ3267 Sol 给定\(N\)个正整数构成的序列,将对于指定的闭区间查询其区间内的不同的数的个数 主席树 不是权值线段树 维护位置 如果插入一个数时发现之前有过了 那么修改当前的,那个 ...

  6. python 想搞加密算法吗?快戳这里

    加密算法介绍 一,HASH Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换 ...

  7. 【noip模拟】局部最小值

    TimeLimit: 1000ms               MemoryLimit: 256MB Description 有一个n行m列的整数矩阵,其中1到n×m之间的每个整数恰好出现一次.如果一 ...

  8. C++学习-9

    友元主要用于访问私有变量,友元函数跟所在位置的权限没有任何关系friend+函数声明 友元类通常设计为一种对数据操作或类之间传递消息的辅助类(注意一下顺序) Explicit就是要求严格的匹配,不允许 ...

  9. Lintcode249 Count of Smaller Number before itself solution 题解

    [题目描述] Give you an integer array (index from 0 to n-1, where n is the size of this array, data value ...

  10. python实现一般最小二乘系统辨识方法

    问题: 对于一个未知参数的系统,往往需要用到系统辨识的方法,例如对于一个单输入单输出系统: Z(k)+a1*Z(k-1)+a2*Z(k-2)=b1*U(k-1)+b2*U(k-2)+V(k) 其中:V ...