Loj #3089. 「BJOI2019」奥术神杖

题目描述

Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的神器,试图借助神器的神秘

力量帮助她们战胜地灾军团。

在付出了惨痛的代价后,精灵们从步步凶险的远古战场取回了一件保存尚完好的神杖。但在经历过那场所有史书都视为禁忌的“诸神黄昏之战”后,神杖上镶嵌的奥术宝石

已经残缺,神力也几乎消耗殆尽。精灵高层在至高会议中决定以举国之力收集残存至今的奥术宝石,并重金悬赏天下能工巧匠修复这件神杖。

你作为神术一脉第五百零一位传人,接受了这个艰巨而神圣的使命。 神杖上从左到右镶嵌了 \(n\) 颗奥术宝石,奥术宝石一共有 \(10\) 种,用数字 0123456789

表示。有些位置的宝石已经残缺,用 . 表示,你需要用完好的奥术宝石填补每一处残缺的部分(每种奥术宝石个数不限,且不能够更换未残缺的宝石)。古老的魔法

书上记载了 \(m\) 种咒语 \((S_i,V_i)\),其中 \(S_i\) 是一个非空数字串,\(V_i\) 是这种组合能够激发的神力。

神杖的初始神力值 \(\mathrm{Magic} = 1\),每当神杖中出现了连续一段宝石与 \(S_i\) 相等时,神力值 \(\mathrm{Magic}\) 就会乘以 \(V_i\)。但神杖如果包含

了太多咒语就不再纯净导致神力降低:设 \(c\) 为神杖包含的咒语个数(若咒语类别相同但出现位置不同视为多次),神杖最终的神力值为 \(\sqrt[c]{\mathrm{Magic}}\)。(若 \(c = 0\) 则神杖最终神力值为 \(1\)。)

例如有两种咒语 \((01,3)\) 、\((10,4)\),那么神杖 0101 的神力值为 \(\sqrt[3]{ 3 \times 4 \times 3}\)。

输入格式

第一行两个正整数 \(n,m\),表示宝石数和咒语数。

第二行为一个长度为 \(n\) 的字符串 \(T\),表示初始的神杖。

接下来 \(m\) 行每行一个非空数字串 \(S_i\) 和一个正整数 \(V_i\),表示每种咒语。

输出格式

输出最终神杖上从左到右镶嵌的宝石,多解时任意输出一个即可。

数据范围与提示

\(n,\sum_{i=1}^m|S_i|\leq 150\)。\(V_i\leq 10^9\)

\(\\\)

首先将答案取一个对数,

\[\displaystyle
\log_2^{\sqrt[c]{\prod_{i=1}^c V_i}}=\frac{\sum_{i=1}^c\log_2^{V_i}}{c}
\]

要求最大化\(\frac{\sum_{i=1}^c V_i}{c}\)就是裸的\(0/1\)分数规划问题(我竟然没看出来,真是越来越zz了)。具体实现时在\(AC\)自动机上\(DP\)就好了。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 1505
#define eps 1e-8 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m;
char s[N],t[N]; struct trie {
int ch[10];
int cnt,fail;
double sum;
}tr[N]; int cnt=1;
void Insert(char *s,double val) {
int len=strlen(s+1);
int v=1;
for(int i=1;i<=len;i++) {
int j=s[i]-'0';
if(!tr[v].ch[j]) tr[v].ch[j]=++cnt;
v=tr[v].ch[j];
}
tr[v].cnt++;
tr[v].sum+=val;
} void build_fail() {
static queue<int>q;
for(int i=0;i<10;i++) {
if(!tr[1].ch[i]) tr[1].ch[i]=1;
else {
tr[tr[1].ch[i]].fail=1;
q.push(tr[1].ch[i]);
}
}
while(!q.empty()) {
int v=q.front();
q.pop();
tr[v].cnt+=tr[tr[v].fail].cnt;
tr[v].sum+=tr[tr[v].fail].sum;
for(int i=0;i<10;i++) {
if(!tr[v].ch[i]) tr[v].ch[i]=tr[tr[v].fail].ch[i];
else {
int sn=tr[v].ch[i];
tr[sn].fail=tr[tr[v].fail].ch[i];
q.push(sn);
}
}
}
} double f[N][N];
double tag[N];
struct node {
int x,y,type;
node() {}
node(int _x,int _y,int _type) {
x=_x,y=_y,type=_type;
}
}; node fr[N][N];
bool chk(double ans) {
for(int i=1;i<=cnt;i++) tag[i]=tr[i].sum-tr[i].cnt*ans;
for(int i=0;i<=n;i++)
for(int j=1;j<=cnt;j++)
f[i][j]=-1e9;
f[0][1]=0;
for(int i=0;i<n;i++) {
for(int j=1;j<=cnt;j++) {
if(f[i][j]<-1e6) continue ;
if(s[i+1]=='.') {
for(int k=0;k<10;k++) {
int q=tr[j].ch[k];
if(f[i][j]+tag[q]>f[i+1][q]) {
f[i+1][q]=f[i][j]+tag[q];
fr[i+1][q]=node(i,j,k);
}
}
} else {
int q=tr[j].ch[s[i+1]-'0'];
if(f[i][j]+tag[q]>f[i+1][q]) {
f[i+1][q]=f[i][j]+tag[q];
fr[i+1][q]=node(i,j,s[i+1]-'0');
}
}
}
}
for(int i=1;i<=cnt;i++) if(f[n][i]>0) return 1;
return 0;
} void out(int x,int y) {
if(!x) return ;
out(fr[x][y].x,fr[x][y].y);
cout<<fr[x][y].type;
} int main() {
n=Get(),m=Get();
scanf("%s",s+1);
for(int i=1;i<=m;i++) {
scanf("%s",t+1);
double v=Get();
Insert(t,log2(v));
}
build_fail();
double l=0,r=100,mid;
while(l+eps<r) {
mid=(l+r)/2.0;
if(chk(mid)) l=mid;
else r=mid-eps;
}
chk(l);
for(int i=1;i<=cnt;i++) {
if(f[n][i]>0) {
out(n,i);
break ;
}
}
return 0;
}

Loj #3089. 「BJOI2019」奥术神杖的更多相关文章

  1. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  2. 【LOJ】#3089. 「BJOI2019」奥术神杖

    LOJ#3089. 「BJOI2019」奥术神杖 看见乘积就取log,开根号就是除法,很容易发现这就是一道01分数规划.. 然后建出AC自动机直接dp就行,判断条件要设成>0,因为起点的值是1, ...

  3. LOJ 3089: 洛谷 P5319: 「BJOI2019」奥术神杖

    题目传送门:LOJ #3089. 题意简述: 有一个长度为 \(n\) 的母串,其中某些位置已固定,另一些位置可以任意填. 同时给定 \(m\) 个小串,第 \(i\) 个为 \(S_i\),所有位置 ...

  4. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  5. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  6. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

  7. LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域

    题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...

  8. LOJ 3093 「BJOI2019」光线——数学+思路

    题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...

  9. LOJ 3092 「BJOI2019」排兵布阵 ——DP

    题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...

随机推荐

  1. Windows Server 2016-客户端退域的三种方法

    前边我们提到了客户端加域的操作方法,本章为大家补充域客户端退域的操作过程,包含图形化.netdom remove.Powershell三种方法,具体内容如下: 图形化退域方法: 1.Win键,计算机右 ...

  2. lombok的安装

    Lombok简介 Lombok是一个可以通过简单的注解形式来帮助我们简化消除一些必须有但显得很臃肿的Java代码的工具,通过使用对应的注解,可以在编译源码的时候生成对应的方法.官方地址:https:/ ...

  3. 《iOS 11 安全区域适配总结》

    本文来自于腾讯Bugly公众号(weixinBugly),作者:sonialiu,未经作者同意,请勿转载,原文地址:http://mp.weixin.qq.com/s/W1_0VrchCO50owhJ ...

  4. 【死磕 Spring】----- IOC 之 Spring 统一资源加载策略

    原文出自:http://cmsblogs.com 在学 Java SE 的时候我们学习了一个标准类 java.net.URL,该类在 Java SE 中的定位为统一资源定位器(Uniform Reso ...

  5. Java 枚举类详解

    1. 枚举类定义 在某些情况下,一个类的对象是有限而且固定的,比如季节类,它只有4个对象,这种实例有限而且固定的类,在Java里被称为枚举类. 2. 早期实现枚举的方式 public static f ...

  6. Vs 中关于项目中的某 NuGet 程序包还原失败:找不到“xxx”版本的程序包“xxx”

    问题:     首先出现这个bug的是在我的vs2017社区版的ide上,这两天使用了出现了一个非常神奇的问题,就是我程序中的nuget包总提示找不到源文件,并且我点击Nuget还原的话还一直提示着一 ...

  7. Python 进度条显示

    运行工具:Pycharm, import timescale = 50print("开始执行".center(scale//2,"-")) start = ti ...

  8. ASP.NET Core Web API 集成测试

    本文需要您了解ASP.NET Core Web API 和 xUnit的相关知识. 这里有xUnit的介绍: https://www.cnblogs.com/cgzl/p/9178672.html#t ...

  9. MacBook IDEA激活码(附视频)

    Windows激活请看这里:IDEA激活码 此教程实时更新,请放心使用:如果有新版本出现猪哥都会第一时间尝试激活: idea官网下载地址:https://www.jetbrains.com/idea/ ...

  10. linux(centos)上安装mysql教程,为需要远程登录的用户赋予权限

    最近把之前学生时代的win server换成了linux(centos)系统,因为win对于部署一些项目时候比较麻烦,直接入正题 1.准备阶段 我使用xshell工具管理服务器,相应下载和安装自行百度 ...