PAT1126:Eulerian Path
1126. Eulerian Path (25)
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (<= 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).
Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either "Eulerian", "Semi-Eulerian", or "Non-Eulerian". Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.
Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3
Non-Eulerian 思路
判断一个图:
1)是不是欧拉图。
2)半欧拉图。
3)二者都不是。 1.邻接表存储图,dfs先确定连通性。不连通则为3)
2.在图连通的基础上确定是欧拉图还是半欧拉图。点的度数全为偶数为欧拉图,恰好有两个点度数为奇数是半欧拉图,其余情况二者皆不是。 代码
#include<vector>
#include<iostream>
using namespace std;
int cnt = 0;
vector<bool> isvisit(501,false); void dfs(int root,const vector<vector<int>>& graph)
{
isvisit[root] = true;
cnt++;
for(int i = 0;i < graph[root].size();i++)
{
if(!isvisit[graph[root][i]])
dfs(graph[root][i],graph);
}
} int main()
{
int N,M;
while(cin >> N >> M)
{
vector<vector<int>> vertices(N+1);
for(int i = 0;i < M;i++)
{
int a,b;
cin >> a >> b;
vertices[a].push_back(b);
vertices[b].push_back(a);
}
int countOdds = 0;
for(int i = 1;i <= N;i++)
{
if(i == 1)
cout << vertices[i].size();
else
cout << " " << vertices[i].size();
if(vertices[i].size() % 2 != 0 )
{
countOdds++;
}
}
cout << endl;
dfs(1,vertices); if(cnt == N && countOdds == 0)
cout << "Eulerian" << endl;
else if(cnt == N && countOdds == 2)
cout << "Semi-Eulerian" << endl;
else
cout << "Non-Eulerian" << endl;
}
}
PAT1126:Eulerian Path的更多相关文章
- Graph | Eulerian path
In graph theory, a Eulerian trail (or Eulerian path) is a trail in a graph which visits every edge e ...
- A1126. Eulerian Path
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT A1126 Eulerian Path (25 分)——连通图,入度
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- 1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT甲级 1126. Eulerian Path (25)
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PAT 甲级 1126 Eulerian Path
https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...
- PAT 1126 Eulerian Path[欧拉路][比较]
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT甲级——1126 Eulerian Path
我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...
- PAT 1126 Eulerian Path
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
随机推荐
- Oracle Forms Services Architecture
Oracle Forms Services Architecture Author: PTIAN(tianpan@gmail.com) Creation ...
- android的Binder通信机制java层浅谈-android学习之旅(88)
1.Service Manager的Java代理对象 在Java层中,Service Manager的代理对象类型为ServiceManagerProxy.它继承并且实现了IServiceManage ...
- 【单片机】基于有方GPRS的智能电梯控制系统
前一篇文章<时钟及温度的显示>中所介绍的作品,是作为一个单片机新手在暑假学了一个月的单片机之后,做的第一个综合性作品,涵盖了二极管.蜂鸣器.数码管.液晶屏.按键.时钟芯片.温度传感器的控制 ...
- 初探linux子系统集之写在前言
毕业两周年,进入嵌入式linux这个行业也已两个年头有余,从开始的linux驱动,android的framework,到现在的linux应用,android的app以及产品的零零总总,其实很想把这些都 ...
- Java反编译工具(Java Decompiler)
Java Decompiler是一种非常实用的JAVA反编译工具,可以对整个jar包进行反编译,也可以将其集成到eclipse上,非常方便的根据class文件的源码.,官网地址http://jd.be ...
- 基于Redis的分布式锁两种实现方式
最近有一个竞拍的项目会用到分布式锁,网上查到的结果是有三种途径可以实现.1.数据库锁机制,2.redis的锁,3.zookeeper.考虑到使用mysql实现会在性能这一块会受影响,zookeeper ...
- NopCommerce开源项目中很基础但是很实用的C# Helper方法
刚过了个五一,在杭州到处看房子,不知道杭州最近怎么了,杭州买房的人这么多,房价涨得太厉害,这几年翻倍翻倍地涨,刚过G20,又要亚运会,让我这样的刚需用户买不起,也买不到房子,搞得人心惶惶,太恐怖了,心 ...
- mysql性能优化之-innodb_flush_log_at_trx_commit
innodb_flush_log_at_trx_commit是配置MySql日志何时写入硬盘的参数: 一.参数值说明 0:log buffer将每秒一次地写入log file中,并且log file的 ...
- 【个人学习笔记】走近H5
一.HTML5概述 1.HTML5新特性 兼容性(ie9+).合理性.效率.安全性.分离.简化.通用性.无插件 2.HTML5构成 主要包括下面这些功能:Canvas(2D和3D).Channel消息 ...
- spring boot之入门Controller常用注解
Controller常用注解 @Controller 处理http请求 @RestController Spring4之后新加的注解,原来返回json数据需要@ResponseBody配合@Cont ...