Description

题库链接

给你一段长度为 \(n\) 的序列 \(K\) 。 \(m\) 组询问,每次给定左右端点 \(l,r\) 。求出满足区间内下述贡献和。

  1. 如果一个区间的两个端点是这一个区间的最大与次大值,那么将获得 \(p_1\) 的价值;
  2. 如果一个区间的一个端点是最大值,而另一个端点不是次大值,那么将获得 \(p_2\) 的价值。

\(1\leq n,m\leq 200000\)

Solution

显然,两种情况都需要满足其中一个端点是最大值。我们可以用单调栈预处理出两个数组 \(l_i,r_i\) 分别表示左边第一个比 \(K_i\) 大的数的位置,以及右边第一个比 \(K_i\) 大的数的位置。

显然我们枚举位置 \(i\) 时,满足:

  1. 左端点为 \(l_i\) 右端点为 \(r_i\) 时,这个区间贡献为 \(p_1\) ;
  2. 左端点为 \(l_i\) 右端点在 \((i,r_i)\) 之间时,贡献为 \(p_2\) ;
  3. 左端点在 \((l_i, i)\) 之间时,右端点为 \(r_i\) ,贡献为 \(p_2\)

然后就是扫描线来处理所有询问了。

因为单调队列的 \(while\) 写成 \(if\) 调了一下午。

Code

//It is made by Awson on 2018.3.6
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N = 200000; int n, m, p1, p2, a[N+5], l[N+5], r[N+5], S[N+5], top, cnt; LL ans[N+5];
struct Segment_tree {
#define lr(o) (o<<1)
#define rr(o) (o<<1|1)
LL key[(N<<2)+5], lazy[(N<<2)+5];
void pushdown(int o, int l, int r, int mid) {
key[lr(o)] += 1ll*(mid-l+1)*lazy[o];
key[rr(o)] += 1ll*(r-mid)*lazy[o];
lazy[lr(o)] += lazy[o], lazy[rr(o)] += lazy[o];
lazy[o] = 0;
}
void update(int o, int l, int r, int a, int b, int k) {
if (a <= l && r <= b) {key[o] += 1ll*(r-l+1)*k, lazy[o] += k; return; }
int mid = (l+r)>>1; if (lazy[o]) pushdown(o, l, r, mid);
if (a <= mid) update(lr(o), l, mid, a, b, k);
if (b > mid) update(rr(o), mid+1, r, a, b, k);
key[o] = key[lr(o)]+key[rr(o)];
}
LL query(int o, int l, int r, int a, int b) {
if (a <= l && r <= b) return key[o]; int mid = (l+r)>>1;
if (lazy[o]) pushdown(o, l, r, mid); LL c1 = 0, c2 = 0;
if (a <= mid) c1 = query(lr(o), l, mid, a, b);
if (b > mid) c2 = query(rr(o), mid+1, r, a, b);
return c1+c2;
}
}T;
struct opts {
int l, r, t, id, p;
bool operator < (const opts &b) const {return t < b.t; }
}s1[N*2+5], s2[N*3+5]; void work() {
scanf("%d%d%d%d", &n, &m, &p1, &p2);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= m; i++) {
int l, r;
scanf("%d%d", &l, &r); ans[i] = 1ll*(r-l)*p1;
s1[i].l = l, s1[i].r = r, s1[i].t = l-1, s1[i].id = i, s1[i].p = -1;
s1[i+m].l = l, s1[i+m].r = r, s1[i+m].t = r, s1[i+m].id = i, s1[i+m].p = 1;
}
top = 0;
for (int i = 1; i <= n; i++) {
while (top > 0 && a[i] > a[S[top]]) --top;
l[i] = (top == 0 ? 0 : S[top]); S[++top] = i;
}
top = 0;
for (int i = n; i >= 1; i--) {
while (top > 0 && a[i] > a[S[top]]) --top;
r[i] = top == 0 ? n+1 : S[top]; S[++top] = i;
}
for (int i = 1; i <= n; i++) {
if (l[i] != 0 && r[i] != n+1) s2[++cnt].l = s2[cnt].r = r[i], s2[cnt].t = l[i], s2[cnt].p = p1;
if (l[i] != 0 && r[i] > i+1) s2[++cnt].l = i+1, s2[cnt].r = r[i]-1, s2[cnt].t = l[i], s2[cnt].p = p2;
if (l[i] < i-1 && r[i] != n+1) s2[++cnt].l = l[i]+1, s2[cnt].r = i-1, s2[cnt].t = r[i], s2[cnt].p = p2;
}
sort(s1+1, s1+2*m+1); sort(s2+1, s2+cnt+1);
int n1 = 1, n2 = 1;
while (n1 <= 2*m) {
while (n2 <= cnt && s2[n2].t <= s1[n1].t) T.update(1, 1, n, s2[n2].l, s2[n2].r, s2[n2].p), ++n2;
while (n1 <= 2*m && (s1[n1].t < s2[n2].t || n2 > cnt)) ans[s1[n1].id] += 1ll*T.query(1, 1, n, s1[n1].l, s1[n1].r)*s1[n1].p, ++n1;
}
for (int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
int main() {
work(); return 0;
}

[HNOI 2017]影魔的更多相关文章

  1. [HNOI/AHOI2017]影魔

    [HNOI/AHOI2017]影魔 题目大意: 有一排\(n(n\le2\times10^5)\)个数\(k_{1\sim n}\).对于点对\((i,j)\),若不存在\(k_s(i<s< ...

  2. 【HNOI 2017】影魔

    Problem Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还 ...

  3. [HNOI 2017]单旋

    Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的 ...

  4. [HNOI 2017]抛硬币

    Description 题库链接 两人抛硬币一人 \(a\) 次,一人 \(b\) 次.记正面朝上多的为胜.问抛出 \(a\) 次的人胜出的方案数. \(1\le a,b\le 10^{15},b\l ...

  5. [HNOI 2017]礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...

  6. 【HNOI 2017】大佬

    Problem Description 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢言语.你作为一个 OIer, ...

  7. HNOI 2017

    题目链接 我还是按bzoj AC数量排序做的 4827 这个其实如果推一下(求每个值)式子会发现是个卷积,然后FFT就好了 4826 记不太清了,可以求出每个点左右第一个比他的的点的位置,将点对看成平 ...

  8. 【HNOI 2017】礼物

    Problem Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个装饰物,并且每个装饰物 ...

  9. [HNOI 2017]大佬

    Description 题库链接 题意简述来自Gypsophila. 你现在要怼 \(m\) 个大佬,第 \(i\) 个大佬的自信值是 \(C_i\) .每次怼大佬之前,你的自信值是 \(mc\),等 ...

随机推荐

  1. 用Python满足满足自己的“小虚荣”

    首先声明,学习这个只是为了好玩,只是为了好玩,并不是想用这个弄虚作假,做一些不好的事情!一心想做技术人,自制自治! 我们有时候发布一篇日志,或者是一篇博文,总希望自己的浏览量能高点,这样看起来也倍有面 ...

  2. 杭电OJ2004——成绩转换

    /*成绩转换Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  3. 解决vue2.0路由 TypeError: Cannot read property 'matched' of undefined 的错误问题

    刚开始使用vue-router2.0,虽然也用了vux,用起来却发现一个问题--具体如下: 正常情况下使用脚手架跑完之后,然后修改源项目,首先在main.js入口里把该import进去的vuex,vu ...

  4. C#中的函数式编程:递归与纯函数(二)

    在序言中,我们提到函数式编程的两大特征:无副作用.函数是第一公民.现在,我们先来深入第一个特征:无副作用. 无副作用是通过引用透明(Referential transparency)来定义的.如果一个 ...

  5. JAVAEE——BOS物流项目09:业务受理需求分析、创建表、实现自动分单、数据表格编辑功能使用方法和工作单快速录入

    1 学习计划 1.业务受理需求分析 n 业务通知单 n 工单 n 工作单 2.创建业务受理环节的数据表 n 业务通知单 n 工单 n 工作单 3.实现业务受理自动分单 n 在CRM服务端扩展方法根据手 ...

  6. 工频相位无线同步模块PSYN5000系列在高压设备状态检测和局部放电故障定位的应用方案

    关键词: PSYN5000,无线同步模块,工频相位,局部放电,在线监测,高压设备,设备状态,故障定位. 前言: 在电力监测领域,出于方便和安全考虑,有些系统不得不采用无线通信的方式,在这样一个无线通信 ...

  7. [UWP]针对UWP程序多语言支持的总结,含RTL

    UWP 对 Globalization and localization 的支持非常好,可以非常容易地实现应用程序本地化. 所谓本地化,表现最为直观的就是UI上文字和布局方式了,针对文字,提供不同的语 ...

  8. python中的赋值与深浅拷贝

    Python当中对于拷贝,分为两种类型.一种是数字和字符串,另一种就是列表.元组.字典等其他类型了. 一.数字和字符串的拷贝 1.赋值 举个栗子: a1 = 123123 a2 = 123123 # ...

  9. apigw鉴权分析(1-4)新浪微博开放平台 - 鉴权分析

    一.访问入口 http://open.weibo.com/wiki/%E6%8E%88%E6%9D%83%E6%9C%BA%E5%88%B6%E8%AF%B4%E6%98%8E 微博开放接口的调用,如 ...

  10. C++ 排列最优解算法思想

    枚举全排列 #include <iostream> #include <cstring> #include <string> using namespace std ...