Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Example:

Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6

这道收集雨水的题跟之前的那道 Largest Rectangle in Histogram 有些类似,但是又不太一样,先来看一种方法,这种方法是基于动态规划 Dynamic Programming 的,维护一个一维的 dp 数组,这个 DP 算法需要遍历两遍数组,第一遍在 dp[i] 中存入i位置左边的最大值,然后开始第二遍遍历数组,第二次遍历时找右边最大值,然后和左边最大值比较取其中的较小值,然后跟当前值 A[i] 相比,如果大于当前值,则将差值存入结果,参见代码如下:

C++ 解法一:

class Solution {
public:
int trap(vector<int>& height) {
int res = , mx = , n = height.size();
vector<int> dp(n, );
for (int i = ; i < n; ++i) {
dp[i] = mx;
mx = max(mx, height[i]);
}
mx = ;
for (int i = n - ; i >= ; --i) {
dp[i] = min(dp[i], mx);
mx = max(mx, height[i]);
if (dp[i] > height[i]) res += dp[i] - height[i];
}
return res;
}
};

Java 解法一:

public class Solution {
public int trap(int[] height) {
int res = 0, mx = 0, n = height.length;
int[] dp = new int[n];
for (int i = 0; i < n; ++i) {
dp[i] = mx;
mx = Math.max(mx, height[i]);
}
mx = 0;
for (int i = n - 1; i >= 0; --i) {
dp[i] = Math.min(dp[i], mx);
mx = Math.max(mx, height[i]);
if (dp[i] - height[i] > 0) res += dp[i] - height[i];
}
return res;
}
}

再看一种只需要遍历一次即可的解法,这个算法需要 left 和 right 两个指针分别指向数组的首尾位置,从两边向中间扫描,在当前两指针确定的范围内,先比较两头找出较小值,如果较小值是 left 指向的值,则从左向右扫描,如果较小值是 right 指向的值,则从右向左扫描,若遇到的值比当较小值小,则将差值存入结果,如遇到的值大,则重新确定新的窗口范围,以此类推直至 left 和 right 指针重合,参见代码如下:

C++ 解法二:

class Solution {
public:
int trap(vector<int>& height) {
int res = , l = , r = height.size() - ;
while (l < r) {
int mn = min(height[l], height[r]);
if (mn == height[l]) {
++l;
while (l < r && height[l] < mn) {
res += mn - height[l++];
}
} else {
--r;
while (l < r && height[r] < mn) {
res += mn - height[r--];
}
}
}
return res;
}
};

Java 解法二:

public class Solution {
public int trap(int[] height) {
int res = 0, l = 0, r = height.length - 1;
while (l < r) {
int mn = Math.min(height[l], height[r]);
if (height[l] == mn) {
++l;
while (l < r && height[l] < mn) {
res += mn - height[l++];
}
} else {
--r;
while (l < r && height[r] < mn) {
res += mn - height[r--];
}
}
}
return res;
}
}

我们可以对上面的解法进行进一步优化,使其更加简洁:

C++ 解法三:

class Solution {
public:
int trap(vector<int>& height) {
int l = , r = height.size() - , level = , res = ;
while (l < r) {
int lower = height[(height[l] < height[r]) ? l++ : r--];
level = max(level, lower);
res += level - lower;
}
return res;
}
};

Java 解法三:

public class Solution {
public int trap(int[] height) {
int l = 0, r = height.length - 1, level = 0, res = 0;
while (l < r) {
int lower = height[(height[l] < height[r]) ? l++ : r--];
level = Math.max(level, lower);
res += level - lower;
}
return res;
}
}

下面这种解法是用 stack 来做的,博主一开始都没有注意到这道题的 tag 还有 stack,所以以后在总结的时候还是要多多留意一下标签啊。其实用 stack 的方法博主感觉更容易理解,思路是,遍历高度,如果此时栈为空,或者当前高度小于等于栈顶高度,则把当前高度的坐标压入栈,注意这里不直接把高度压入栈,而是把坐标压入栈,这样方便在后来算水平距离。当遇到比栈顶高度大的时候,就说明有可能会有坑存在,可以装雨水。此时栈里至少有一个高度,如果只有一个的话,那么不能形成坑,直接跳过,如果多余一个的话,那么此时把栈顶元素取出来当作坑,新的栈顶元素就是左边界,当前高度是右边界,只要取二者较小的,减去坑的高度,长度就是右边界坐标减去左边界坐标再减1,二者相乘就是盛水量啦,参见代码如下:

C++ 解法四:

class Solution {
public:
int trap(vector<int>& height) {
stack<int> st;
int i = , res = , n = height.size();
while (i < n) {
if (st.empty() || height[i] <= height[st.top()]) {
st.push(i++);
} else {
int t = st.top(); st.pop();
if (st.empty()) continue;
res += (min(height[i], height[st.top()]) - height[t]) * (i - st.top() - );
}
}
return res;
}
};

Java 解法四:

class Solution {
public int trap(int[] height) {
Stack<Integer> s = new Stack<Integer>();
int i = 0, n = height.length, res = 0;
while (i < n) {
if (s.isEmpty() || height[i] <= height[s.peek()]) {
s.push(i++);
} else {
int t = s.pop();
if (s.isEmpty()) continue;
res += (Math.min(height[i], height[s.peek()]) - height[t]) * (i - s.peek() - 1);
}
}
return res;
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/42

类似题目:

Trapping Rain Water II

Container With Most Water

Product of Array Except Self

Pour Water

参考资料:

https://leetcode.com/problems/trapping-rain-water/

https://leetcode.com/problems/trapping-rain-water/discuss/17364/7-lines-C-C%2B%2B

https://leetcode.com/problems/trapping-rain-water/discuss/17414/A-stack-based-solution-for-reference-inspired-by-Histogram

https://leetcode.com/problems/trapping-rain-water/discuss/17357/Sharing-my-simple-c%2B%2B-code%3A-O(n)-time-O(1)-space

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Trapping Rain Water 收集雨水的更多相关文章

  1. [LeetCode] 42. Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  2. [LintCode] Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  3. [LeetCode] Trapping Rain Water II 收集雨水之二

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  4. LeetCode: Trapping Rain Water 解题报告

    https://oj.leetcode.com/problems/trapping-rain-water/ Trapping Rain WaterGiven n non-negative intege ...

  5. 【LeetCode】42. Trapping Rain Water 接雨水 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 保存左右最大值 单调栈 日期 题目地址:ht ...

  6. 【LeetCode每天一题】Trapping Rain Water(获得雨水的容量)

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  7. Leetcode: Trapping Rain Water II

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  8. [leetcode]Trapping Rain Water @ Python

    原题地址:https://oj.leetcode.com/problems/trapping-rain-water/ 题意: Given n non-negative integers represe ...

  9. Leetcode Trapping Rain Water

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

随机推荐

  1. Java中的泛型 (上) - 基本概念和原理

    本节我们主要来介绍泛型的基本概念和原理 后续章节我们会介绍各种容器类,容器类可以说是日常程序开发中天天用到的,没有容器类,难以想象能开发什么真正有用的程序.而容器类是基于泛型的,不理解泛型,我们就难以 ...

  2. Apache Spark简单介绍、安装及使用

    Apache Spark简介 Apache Spark是一个高速的通用型计算引擎,用来实现分布式的大规模数据的处理任务. 分布式的处理方式可以使以前单台计算机面对大规模数据时处理不了的情况成为可能. ...

  3. 基于NodeJS微信公众号

    最近重新研究了微信公众号的高级接口,原来也利用C#或JAVA写过微信公众号,主要是消息的基础接口. 由于当时不知道微信公众号可以申请测试公众号,微信测试公众号基本上没有任何限制,对于开发来说是一个不错 ...

  4. Devexpress Ribbon Add Logo

    一直在网上找类似的效果.在Devpexress控件里面的这个是一个Demo的.没法查看源代码.也不知道怎么写的.所以就在网上搜索了半天的. 终于找到类似的解决办法. 可以使用重绘制的办法的来解决. [ ...

  5. 学习笔记--C#深复制和浅复制

    参考博客:http://www.cnblogs.com/nliao/archive/2012/11/18/2776114.html 例子网上都有很多,我也就不列了. 其实很久以前就明白了这两者的区别, ...

  6. Mysql性能优化一

    下一篇:Mysql性能优化二 mysql的性能优化无法一蹴而就,必须一步一步慢慢来,从各个方面进行优化,最终性能就会有大的提升. Mysql数据库的优化技术 对mysql优化是一个综合性的技术,主要包 ...

  7. 类型转换和类型相关函数.png

  8. PowerDesigner 常用设置

    1.使用 JDBC 方式连接 Oracle 逆向生成数据库 PDM 使用 ODBC 方式连接 Oracle 数据库可以借鉴这位兄弟的博客:http://www.cnblogs.com/clivehua ...

  9. Cleave.js – 自动格式化表单输入框的文本内容

    Cleave.js 有一个简单的目的:帮助你自动格式输入的文本内容. 这个想法是提供一个简单的方法来格式化您的输入数据以增加输入字段的可读性.通过使用这个库,您不需要编写任何正则表达式来控制输入文本的 ...

  10. mvc mvp mvvm模式的区别

    mvc模式中,Model不依赖于View,但是View是依赖于Model的,m和v没有进行完全的分离,三者之间是单向的操作 mvp模式中,m和v之间的交互是双向的,m和v完全分离,m和v的交互是通过P ...