[Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)
Description
给出两个n位10进制整数x和y,你需要计算x*y。
Input
第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。
Output
输出一行,即x*y的结果。(注意判断前导0)
Sample Input
1
3
4
Sample Output
12
HINT
n<=60000
题解
A*B Problem。和 A+B Problem 一样简单。
1 input() and print(int(input()) * int(input()))
对于一个大数 $\overline{a_na_{n-1}\cdots a_0}$ ,显然我们可以将其记为 $N=a_0\cdot 10^0+a_1\cdot 10^1+\cdots+a_n\cdot10^n$ 。将 $10^k$ 变为形式幂级数 $x^k$ : $N=a_0\cdot x^0+a_1\cdot x^1+\cdots+a_n\cdot x^n$ 。显然这是一个多项式。䨻 $FFT$ 的板子即可。
注意输入的数有前导零...
//It is made by Awson on 2018.1.27
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <complex>
#include <iostream>
#include <algorithm>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int INF = ~0u>>;
const double pi = acos(-1.0);
const int N = 6e4*;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int n, m, L, R[N+], sum[N+];
dob a[N+], b[N+]; int getnum() {char ch = getchar(); while (ch < '' || ch > '') ch = getchar(); return ch-; }
void FFT(dob *A, int o) {
for (int i = ; i < n; i++) if (i > R[i]) swap(A[i], A[R[i]]);
for (int i = ; i < n; i <<= ) {
dob wn(cos(pi/i), sin(pi*o/i)), x, y;
for (int j = ; j < n; j += (i<<)) {
dob w(, );
for (int k = ; k < i; k++, w *= wn) {
x = A[j+k], y = w*A[i+j+k];
A[j+k] = x+y, A[i+j+k] = x-y;
}
}
}
}
void work() {
read(n); n--;
for (int i = n; i >= ; i--) a[i] = getnum();
for (int i = n; i >= ; i--) b[i] = getnum();
m = n<<;
for (n = ; n <= m; n <<= ) L++;
for (int i = ; i < n; i++) R[i] = (R[i>>]>>)|((i&)<<(L-));
FFT(a, ), FFT(b, );
for (int i = ; i < n; i++) a[i] *= b[i];
FFT(a, -);
for (int i = ; i <= m; i++) sum[i] = int(a[i].real()/n+0.5);
for (int i = ; i <= m; i++) sum[i+] += sum[i]/, sum[i] %= ;
if (sum[m+]) m++; while (!sum[m]) m--;
for (int i = m; i >= ; i--) write(sum[i]);
}
int main() {
work();
return ;
}
[Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)的更多相关文章
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- P1919 【模板】A*B Problem升级版 /// FFT模板
题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x= ...
- 【模板】A*B Problem(FFT快速傅里叶)
题目:给出两个n位10进制整数x和y,你需要计算x*y.($n \leq 60000$) 分析: 两个正整数的相乘可以视为两个多项式的相乘, 例如 $15 \times 16 = 240$, 可写成 ...
- 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- luoguP1919 A*B Problem升级版 ntt
luoguP1919 A*B Problem升级版 链接 luogu 思路 ntt模板题 代码 #include <bits/stdc++.h> #define ll long long ...
- hdu 1402 A * B Problem Plus FFT
/* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- [luogu P3384] [模板]树链剖分
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...
- 2018.08.28 洛谷P3803 【模板】多项式乘法(FFT)
传送门 fft模板题. 终于学会fft了. 这个方法真是神奇! 经过试验发现手写的complex快得多啊! 代码: #include<iostream> #include<cstdi ...
随机推荐
- eclipse配置svn方法
一.在Eclipse里下载Subclipse插件 方法一:从Eclipse Marketplace里面下载 具体操作:打开Eclipse --> Help --> Eclipse Mark ...
- 《团队-OldNote-项目总结》
我们小组做的是手机便签的app---OldNote 最开始我们想解决普通手机便签无法进行语音和照片的备忘这一问题,但是由于没有做过拍照和录音的经验怕由于技术原因无法达成目的,就没敢写在需求分析中.当完 ...
- 【Alpha版本】冲刺阶段 - Day2 - 漂流
今日进展 袁逸灏:实现车辆的子弹发射(3.5h) 启动类,子弹类(修改类),游戏画面类(修改类) 刘伟康:继续借鉴其他 alpha 冲刺博客,初步了解墨刀.leangoo等工具(2h) 刘先润:解决了 ...
- Archlinux下i3wm与urxvt的配置
前段时间学习了GitHub的两位前辈:Airblader和wlh320.他们的相关教程在https://github.com/Airblader/i3和https://github.com/wlh32 ...
- Scrum 冲刺 第一日
Scrum 冲刺 第一日 站立式会议 燃尽图 Alpha 阶段认领任务 明日任务安排 项目预期任务量 成员贡献值计算规则 今日贡献量 参考资料 站立式会议 返回目录 燃尽图 返回目录 Alpha 阶段 ...
- 一个C&C++程序的生命历程
翻了好多博客,内容星星点点,没找到我想要的,现在吸取大神精华,加上本人拙见,总结如下: 一个C或C++程序从你开始编写,到结束,整个过程,都做了些什么,请看下文: 先看大体的过程:看图: 我在这里主要 ...
- 项目Beta冲刺Day1
项目进展 李明皇 今天解决的进度 点击首页list相应条目将信息传到详情页 明天安排 优化信息详情页布局 林翔 今天解决的进度 前后端连接成功 明天安排 开始微信前端+数据库写入 孙敏铭 今天解决的进 ...
- Mysql 相关操作
1.用户管理 创建用户 create user '用户名'@'IP地址' identified by '密码'; 删除用户 drop user '用户名'@'IP地址'; 修改用户 rename us ...
- python 面向对象设计思想发展史
这篇主要说的是程序设计思想发展历史,分为概述和详细发展历史 一,概述 1940年以前:面向机器 最早的程序设计都是采用机器语言来编写的,直接使用二进制码来表示机器能够识别和执行的 指令和数 据.简单来 ...
- js 点击 返回顶部 动画
附上效果图 触发前 触发后 HTML代码: CSS代码 JS代码 由于复制文本太丑了 所以直接放的图片 但是我在评论区把js代码又复制了一边 以便你们使用