Linux2.6内核--抢占
【摘要】本文首先介绍非抢占式内核(Non-Preemptive Kernel)和可抢占式内核(Preemptive Kernel)的区别。接着分析Linux下有两种抢占:用户态抢占(User Preemption)、内核态抢占(Kernel Preemption)。然后分析了在内核态下:如何判断能否抢占内核(什么是可抢占的条件);何时触发重新调度(何时设置可抢占条件);抢占发生的时机(何时检查可抢占的条件);什么时候不能抢占内核。最后分析了2.6kernel中如何支持抢占内核。
【关键字】内核态抢占 用户态抢占 中断 实时性 自旋锁 linux kernel schedule preemption reentrant
1.非抢占式和可抢占式内核的区别
为了简化问题,我使用嵌入式实时系统uC/OS作为例子。首先要指出的是,uC/OS只有内核态,没有用户态,这和Linux不一样。
多任务系统中,内核负责管理各个任务,或者说为每个任务分配CPU时间,并且负责任务之间的通讯。内核提供的基本服务是任务切换。调度(Scheduler),英文还有一词叫dispatcher,也是调度的意思。这是内核的主要职责之一,就是要决定该轮到哪个任务运行了。多数实时内核是基于优先级调度法的。每个任务根据其重要程度的不同被赋予一定的优先级。基于优先级的调度法指,CPU总是让处在就绪态的优先级最高的任务先运行。然而,究竟何时让高优先级任务掌握CPU的使用权,有两种不同的情况,这要看用的是什么类型的内核,是不可剥夺型的还是可剥夺型内核。
非抢占式内核
非抢占式内核是由任务主动放弃CPU的使用权。非抢占式调度法也称作合作型多任务,各个任务彼此合作共享一个CPU。异步事件还是由中断服务来处理。中断服务可以使一个高优先级的任务由挂起状态变为就绪状态。但中断服务以后控制权还是回到原来被中断了的那个任务,直到该任务主动放弃CPU的使用权时,那个高优先级的任务才能获得CPU的使用权。非抢占式内核如下图所示。
非抢占式内核的优点有:
·中断响应快(与抢占式内核比较);
·允许使用不可重入函数;
·几乎不需要使用信号量保护共享数据。运行的任务占有CPU,不必担心被别的任务抢占。这不是绝对的,在打印机的使用上,仍需要满足互斥条件。
非抢占式内核的缺点有:
·任务响应时间慢。高优先级的任务已经进入就绪态,但还不能运行,要等到当前运行着的任务释放CPU。
·非抢占式内核的任务级响应时间是不确定的,不知道什么时候最高优先级的任务才能拿到CPU的控制权,完全取决于应用程序什么时候释放CPU。
抢占式内核
使用抢占式内核可以保证系统响应时间。最高优先级的任务一旦就绪,总能得到CPU的使用权。当一个运行着的任务使一个比它优先级高的任务进入了就绪态,当前任务的CPU使用权就会被剥夺,或者说被挂起了,那个高优先级的任务立刻得到了CPU的控制权。如果是中断服务子程序使一个高优先级的任务进入就绪态,中断完成时,中断了的任务被挂起,优先级高的那个任务开始运行。抢占式内核如下图所示。
抢占式内核的优点有:
·使用抢占式内核,最高优先级的任务什么时候可以执行,可以得到CPU的使用权是可知的。使用抢占式内核使得任务级响应时间得以最优化。
抢占式内核的缺点有:
·不能直接使用不可重入型函数。调用不可重入函数时,要满足互斥条件,这点可以使用互斥型信号量来实现。如果调用不可重入型函数时,低优先级的任务CPU的使用权被高优先级任务剥夺,不可重入型函数中的数据有可能被破坏。
2.Linux下的用户态抢占和内核态抢占
Linux除了内核态外还有用户态。用户程序的上下文属于用户态,系统调用和中断处理例程上下文属于内核态。在2.6 kernel以前,Linux kernel只支持用户态抢占。
2.1 用户态抢占(User Preemption)
在kernel返回用户态(user-space)时,并且need_resched标志为1时,scheduler被调用,这就是用户态抢占。当kernel返回用户态时,系统可以安全的执行当前的任务,或者切换到另外一个任务。当中断处理例程或者系统调用完成后,kernel返回用户态时,need_resched标志的值会被检查,假如它为1,调度器会选择一个新的任务并执行。中断和系统调用的返回路径(return path)的实现在entry.S中(entry.S不仅包括kernel entry code,也包括kernel exit code)。
2.2 内核态抢占(Kernel Preemption)
在2.6 kernel以前,kernel code(中断和系统调用属于kernel code)会一直运行,直到code被完成或者被阻塞(系统调用可以被阻塞)。在 2.6 kernel里,Linux kernel变成可抢占式。当从中断处理例程返回到内核态(kernel-space)时,kernel会检查是否可以抢占和是否需要重新调度。kernel可以在任何时间点上抢占一个任务(因为中断可以发生在任何时间点上),只要在这个时间点上kernel的状态是安全的、可重新调度的。
3.内核态抢占的设计
3.1 可抢占的条件
要满足什么条件,kernel才可以抢占一个任务的内核态呢?
·没持有锁。锁是用于保护临界区的,不能被抢占。
·Kernel code可重入(reentrant)。因为kernel是SMP-safe的,所以满足可重入性。
如何判断当前上下文(中断处理例程、系统调用、内核线程等)是没持有锁的?Linux在每个每个任务的thread_info结构中增加了preempt_count变量作为preemption的计数器。这个变量初始为0,当加锁时计数器增一,当解锁时计数器减一。
3.2 内核态需要抢占的触发条件
内核提供了一个need_resched标志(这个标志在任务结构thread_info中)来表明是否需要重新执行调度。
3.3 何时触发重新调度
set_tsk_need_resched():设置指定进程中的need_resched标志
clear_tsk need_resched():清除指定进程中的need_resched标志
need_resched():检查need_ resched标志的值;如果被设置就返回真,否则返回假
什么时候需要重新调度:
·时钟中断处理例程检查当前任务的时间片,当任务的时间片消耗完时,scheduler_tick()函数就会设置need_resched标志;
·信号量、等到队列、completion等机制唤醒时都是基于waitqueue的,而waitqueue的唤醒函数为default_wake_function,其调用try_to_wake_up将被唤醒的任务更改为就绪状态并设置need_resched标志。
·设置用户进程的nice值时,可能会使高优先级的任务进入就绪状态;
·改变任务的优先级时,可能会使高优先级的任务进入就绪状态;
·新建一个任务时,可能会使高优先级的任务进入就绪状态;
·对CPU(SMP)进行负载均衡时,当前任务可能需要放到另外一个CPU上运行;
3.4 抢占发生的时机(何时检查可抢占条件)
·当一个中断处理例程退出,在返回到内核态时(kernel-space)。这是隐式的调用schedule()函数,当前任务没有主动放弃CPU使用权,而是被剥夺了CPU使用权。
·当kernel code从不可抢占状态变为可抢占状态时(preemptible again)。也就是preempt_count从正整数变为0时。这也是隐式的调用schedule()函数。
·一个任务在内核态中显式的调用schedule()函数。任务主动放弃CPU使用权。
·一个任务在内核态中被阻塞,导致需要调用schedule()函数。任务主动放弃CPU使用权。
3.5 禁用/使能可抢占条件的操作
对preempt_count操作的函数有add_preempt_count()、sub_preempt_count()、inc_preempt_count()、dec_preempt_count()。
使能可抢占条件的操作是preempt_enable(),它调用dec_preempt_count()函数,然后再调用preempt_check_resched()函数去检查是否需要重新调度。
禁用可抢占条件的操作是preempt_disable(),它调用inc_preempt_count()函数。
在内核中有很多函数调用了preempt_enable()和preempt_disable()。比如spin_lock()函数调用了preempt_disable()函数,spin_unlock()函数调用了preempt_enable()函数。
3.6 什么时候不允许抢占
preempt_count()函数用于获取preempt_count的值,preemptible()用于判断内核是否可抢占。
有几种情况Linux内核不应该被抢占,除此之外,Linux内核在任意一点都可被抢占。这几种情况是:
·内核正进行中断处理。在Linux内核中进程不能抢占中断(中断只能被其他中断中止、抢占,进程不能中止、抢占中断),在中断例程中不允许进行进程调度。进程调度函数schedule()会对此作出判断,如果是在中断中调用,会打印出错信息。
·内核正在进行中断上下文的Bottom Half(中断的下半部)处理。硬件中断返回前会执行软中断,此时仍然处于中断上下文中。
·内核的代码段正持有spinlock自旋锁、writelock/readlock读写锁等锁,处干这些锁的保护状态中。内核中的这些锁是为了在SMP系统中短时间内保证不同CPU上运行的进程并发执行的正确性。当持有这些锁时,内核不应该被抢占,否则由于抢占将导致其他CPU长期不能获得锁而死等。
·内核正在执行调度程序Scheduler。抢占的原因就是为了进行新的调度,没有理由将调度程序抢占掉再运行调度程序。
·内核正在对每个CPU“私有”的数据结构操作(Per-CPU date structures)。在SMP中,对于per-CPU数据结构未用spinlocks保护,因为这些数据结构隐含地被保护了(不同的CPU有不一样的per-CPU数据,其他CPU上运行的进程不会用到另一个CPU的per-CPU数据)。但是如果允许抢占,但一个进程被抢占后重新调度,有可能调度到其他的CPU上去,这时定义的Per-CPU变量就会有问题,这时应禁抢占。
Linux2.6内核--抢占的更多相关文章
- Linux2.6内核--进程调度理论
从1991年Linux的第1版到后来的2.4内核系列,Linux的调度程序都相当简陋,设计近乎原始,见0.11版内核进程调度.当然它很容易理解,但是它在众多可运行进程或者多处理器的环境下都难以胜任. ...
- Linux用户抢占和内核抢占详解(概念, 实现和触发时机)--Linux进程的管理与调度(二十)
1 非抢占式和可抢占式内核 为了简化问题,我使用嵌入式实时系统uC/OS作为例子 首先要指出的是,uC/OS只有内核态,没有用户态,这和Linux不一样 多任务系统中, 内核负责管理各个任务, 或者说 ...
- Linux内核抢占实现机制分析【转】
Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介 ...
- Linux2.6 内核的 Initrd 机制解析
文章来自:www.ibm.com/developerworks/cn/linux/l-k26initrd/ 1.什么是 Initrd initrd 的英文含义是 boot loader initial ...
- Linux2.6 内核的 Initrd 机制解析(转)
from: https://www.ibm.com/developerworks/cn/linux/l-k26initrd/ 简介: Linux 的 initrd 技术是一个非常普遍使用的机制,lin ...
- Linux2.6内核实现的是NPTL
NPTL是一个1×1的线程模型,即一个线程对于一个操作系统的调度进程,优点是非常简单.而其他一些操作系统比如Solaris则是MxN的,M对应创建的线程数,N对应操作系统可以运行的实体.(N<M ...
- Linux内核抢占与中断返回【转】
转自:http://blog.csdn.net/tommy_wxie/article/details/7425728 版权声明:本文为博主原创文章,未经博主允许不得转载. [html] view pl ...
- Linux下的内核抢占
2017-03-03 很遗憾之前在介绍进程调度的文章中,虽然涉及到了内核抢占,但是却没有对其进行深入介绍,今天就稍微总结下内核抢占. 内核抢占在一定程度上减少了对某种事件的响应延迟,这也是内核抢占被引 ...
- 内核抢占实现(preempt) 【转】
转自:http://blog.chinaunix.net/uid-12461657-id-3353217.html 一.什么叫抢占所谓抢占,说白了就是进程切换.linux的用户空间,进程A在执行中,来 ...
随机推荐
- [51nod1239欧拉函数之和]
来自FallDream的博客,未经允许,请勿转载,谢谢 --------------------------------------------- 给定n,求$S(n)=\sum_{i=1}^{n}\ ...
- Linux input子系统 io控制字段【转】
转自:http://www.cnblogs.com/leaven/archive/2011/02/12/1952793.html http://blog.csdn.net/guoshaobei/arc ...
- 微信小程序-参数传递与事件处理
前言 开发过程中经常会遇到从一个页面携带数据到另一个页面的情况,所以需要知道以下信息,什么是事件?有哪些传递方式?如果传递数组呢?如果传递对象呢? 一.事件 什么是事件 事件是视图层到逻辑层的通讯方式 ...
- Delphi 7中的四种消息框
Delphi中平常使用的消息框有四种形式,有ShowMessage.MessageDlg.Application.MessageBox.MessageBox.下面来深入了解下这四种形式的实现和使用.1 ...
- iOS 定位简单使用
一.配置 导入库CoreLocation. 2.info.plist配置key NSLocationWhenInUseUsageDescription和NSLocationAlwaysUsageDes ...
- avalon加载一闪而过现象
为了避免未经处理的原始模板内容在页面载入时在页面中一闪而过,我们可以使用以下样式(详见这里): .ms-controller,.ms-important,[ms-controller],[ms-i ...
- 63. Unique Paths II(中等, 能独立做出来的DP类第二个题^^)
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- 终止Docker容器
可以使用 docker stop 来终止一个运行中的容器. 此外,当Docker容器中指定的应用终结时,容器也自动终止. 例如对于上一章节中只启动了一个终端的容器,用户通过 exit 命令或 Ctrl ...
- 到底什么是集群&分布式
对于楼主这样工作一年的菜鸟,偶尔会看到一些文章标题带有"分布式""集群"关键字,然后就懵逼了.最近对这些概念进行了一定的了解,整理了一下思路,在这里分享给各位猿 ...
- 深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器
作者: 寒小阳 &&龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49949535 ht ...