# -*- coding: utf-8 -*-
# scrapy爬取全部知乎用户信息
# 1:是否遵守robbots_txt协议改为False
# 2: 加入爬取所需的headers: user-agent,authorazation
# 3:确定爬取任务:即想要得到的用户信息
# 4: 爬取思路解析
# 整体思路:从起始大v开始,获得其关注列表和粉丝列表;解析列表,可以得到每一个用户的详细信息地址,组成每一个用户的url;
# 从用户的url开始,解析用户详细信息,取到详细信息。同时又可以解析到每一个用户的关注列表和粉丝列表,循环请求。
# 分步骤如下:
# 4-1:找到起始大v,请求其页面,循环翻页获取其全部的关注列表,粉丝列表
# 4-2:列表步骤:解析关注列表,粉丝列表,从所有列表中取得用户的url_token,组成用户url,执行用户步骤4-3
# 4-3:用户步骤:解析用户url,该步骤可以获得1.该用户详细信息 2.该用户全部的关注列表与粉丝列表,返回列表步骤4-2
# 4-4:同步存储item到数据库mongodb,去重设计。
import json
import scrapy
from zhihu2.items import Zhihu2Item

class ZhihuuserSpider(scrapy.Spider):
    name = 'zhihuuser'
    allowed_domains = ['www.zhihu.com']
    start_urls = ['http://www.zhihu.com/']
    start_user = 'excited-vczh'
    # 一:对用户关注列表的请求构造
    # 用户关注列表 start_user为起始大v,followees_include为请求参数,limit为每页显示用户数,默认20,offset为页码参数,首页为0
    followees_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
    followees_include = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'

    # 二:对用户粉丝列表的请求构造
    # 用户关注列表 start_user为起始大v,followees_include为请求参数,limit为每页显示用户数,默认20,offset为页码参数,首页为0
    followers_url = 'https://www.zhihu.com/api/v4/members/{user}/followers?include={include}&offset={offset}&limit={limit}'
    followers_include = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'

    # 三:对用户详细信息的请求构造
    user_url = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
    user_include = 'allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics'
    def start_requests(self):
        # 分别举列表url和用户url示例,以验证是否能够爬取
        # 关注列表url示例
        # 返回401是请求验证用户的身份,知乎的首页是要求验证用户的身份才能进入,所以需要在settings里面设置authorization
        # url='https://www.zhihu.com/api/v4/members/excited-vczh/followees?include=data%5B*%5D.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F(type%3Dbest_answerer)%5D.topics&offset=60&limit=20'
        # 用户详细url示例
        # url='https://www.zhihu.com/api/v4/members/lanfengxing?include=allow_message%2Cis_followed%2Cis_following%2Cis_org%2Cis_blocking%2Cemployments%2Canswer_count%2Cfollower_count%2Carticles_count%2Cgender%2Cbadge%5B%3F(type%3Dbest_answerer)%5D.topics'
        # yield scrapy.Request(url, callback=self.parse)
        # 构造用户关注列表的请求 主要用到format方法

        yield scrapy.Request(url=self.followees_url.format(user=self.start_user, include=self.followees_include, offset=0, limit=20), callback=self.parse_followees)
        # 构造用户粉丝列表的请求 主要用到format方法
        yield scrapy.Request(url=self.followers_url.format(user=self.start_user, include=self.followers_include, offset=0, limit=20),callback=self.parse_followers)
        # 对用户详细信息的请求构造
        yield scrapy.Request(url=self.user_url.format(user=self.start_user, include=self.user_include),callback=self.parse_user)
    # 解析关注列表
    def parse_followees(self, response):
        results = json.loads(response.text)
        if 'data' in results.keys():
            for result in results.get('data'):
                # 解析关注列表,得到所关注人的url_token,构造解析详细信息请求
                yield scrapy.Request(url=self.user_url.format(user=result.get('url_token'), include=self.user_include),callback=self.parse_user)
        # 构造翻页请求
        if 'paging' in results.keys() and results.get('paging').get('is_end')==False:
            next = results.get('paging').get('next')
            yield scrapy.Request(url=next, callback=self.parse_followees)

    # 解析粉丝列表
    def parse_followers(self, response):
        results = json.loads(response.text)
        if 'data' in results.keys():
            for result in results.get('data'):
                # 解析关注列表,得到所关注人的url_token,构造解析详细信息请求
                yield scrapy.Request(url=self.user_url.format(user=result.get('url_token'), include=self.user_include),
                                     callback=self.parse_user)
        # 构造翻页请求
        if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
            next = results.get('paging').get('next')
            yield scrapy.Request(url=next, callback=self.parse_followers)

    # 解析用户详细信息,由于我们任务的目标是获取用户详细信息,因此在这一步要确定哪些信息是被使用,在items里面做相应设置
    def parse_user(self, response):
        item = Zhihu2Item()
        # 返回的response是json格式,因此需要解析json
        results = json.loads(response.text)
        # 遍历item数据结构的键名,item.field可以得到数据结构的所有键
        for field in item.fields:
            # 如果item的键名在网页里面,则遍历赋值
            if field in results.keys():
                item[field]=results.get(field)
        yield item

        # 提取用户的关注列表
        yield scrapy.Request(url=self.followees_url.format(user=results.get('url_token'),include = self.followees_include,offset=0, limit=20),callback=self.parse_followees)
        # 提取用户的粉丝列表
        yield scrapy.Request(url=self.followers_url.format(user=results.get('url_token'), include=self.followers_include, offset=0, limit=20),callback=self.parse_followers)
# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

# 想要获取的用户信息设置
class Zhihu2Item(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()

    # 姓名 
    name = scrapy.Field()
    # 性别
    gender = scrapy.Field()
    # 职业
    employments = scrapy.Field()
    # 级别
    badge = scrapy.Field()
    # 一句话介绍
    headline = scrapy.Field()
    # 粉丝数
    follower_count = scrapy.Field()
    # 回答问题数
    answer_count = scrapy.Field()
    # 撰写文章数
    articles_count = scrapy.Field()
    # 头像
    avatar_url = scrapy.Field()
    avatar_url_template = scrapy.Field()
    # id
    id = scrapy.Field()
    # 注册类型
    type = scrapy.Field()
    # 注册url
    url = scrapy.Field()
    # 主页地址,唯一识别码
    url_token = scrapy.Field()
    # 用户类型
    user_type = scrapy.Field()
# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
# 项目管道用来处理得到的item信息,这里设置存储到MongoDB的class
class MongoPipeline(object):

    #初始化变量, 这里需要传入mongo_uri,mongo_db两个参数,这两个参数可以从类方法里面获得
    def __init__(self,mongo_uri,mongo_db):
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db

    # 定义类方法,获得mongo_uri,mongo_db
    @classmethod
    def from_crawler(cls,crawler):
        return cls(
        mongo_uri = crawler.settings.get('MONGO_URI'),
        mongo_db = crawler.settings.get('MONGO_DB')
        )

    # 初始化mongodb的变量,client, 与db,爬虫启动时即开始初始化
    def open_spider(self,spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        self.db = self.client[self.mongo_db]

    # 存储主体进程,返回item或者DropItem,这里设置update方法设置去重, 如果有同名就更新,没有就重新建立
    def process_item(self, item, spider):
        name = item.__class__.__name__
        self.db[name].update({'url_token':item['url_token']}, {'$set':item}, True)
        return item

    # 关闭mongodb
    def close_spider(self,spider):
        self.client.close()
# -*- coding: utf-8 -*-

# Scrapy settings for zhihu2 project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'zhihu2'

SPIDER_MODULES = ['zhihu2.spiders']
NEWSPIDER_MODULE = 'zhihu2.spiders'

MONGO_URI = 'localhost'
MONGO_DB = 'zhihu2'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'zhihu2 (+http://www.yourdomain.com)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:

DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
  'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
  'authorization':'oauth c3cef7c66a1843f8b3a9e6a1e3160e20',
}

# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'zhihu2.middlewares.Zhihu2SpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'zhihu2.middlewares.MyCustomDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'zhihu2.pipelines.MongoPipeline': 300,
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

scrapy爬取全部知乎用户信息的更多相关文章

  1. Python爬虫从入门到放弃(十八)之 Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  2. Python之爬虫(二十) Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  3. Python爬虫从入门到放弃(十九)之 Scrapy爬取所有知乎用户信息(下)

    在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在:https://github.com/pythonsite/spider items中的代码主要是我们要爬取的字段的定义 cla ...

  4. Python之爬虫(二十一) Scrapy爬取所有知乎用户信息(下)

    在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在:https://github.com/pythonsite/spider items中的代码主要是我们要爬取的字段的定义 cla ...

  5. 利用Scrapy爬取所有知乎用户详细信息并存至MongoDB

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :崔庆才 本节分享一下爬取知乎用户所有用户信息的 Scrapy 爬虫实战. 本节目标 本节要实现的内容有 ...

  6. 使用 Scrapy 爬取去哪儿网景区信息

    Scrapy 是一个使用 Python 语言开发,为了爬取网站数据,提取结构性数据而编写的应用框架,它用途广泛,比如:数据挖掘.监测和自动化测试.安装使用终端命令 pip install Scrapy ...

  7. 利用scrapy爬取腾讯的招聘信息

    利用scrapy框架抓取腾讯的招聘信息,爬取地址为:https://hr.tencent.com/position.php 抓取字段包括:招聘岗位,人数,工作地点,发布时间,及具体的工作要求和工作任务 ...

  8. 抓取百万知乎用户信息之HttpHelper的迭代之路

    什么是Httphelper? httpelpers是一个封装好拿来获取网络上资源的工具类.因为是用http协议,故取名httphelper. httphelper出现的背景 使用WebClient可以 ...

  9. 43.scrapy爬取链家网站二手房信息-1

    首先分析:目的:采集链家网站二手房数据1.先分析一下二手房主界面信息,显示情况如下: url = https://gz.lianjia.com/ershoufang/pg1/显示总数据量为27589套 ...

随机推荐

  1. 1-6 hibernate映射集合属性

    1.集合类框架 以Tree开头都是按顺序,默认情况下是升序排列. 以Linked 开头的都是按插入顺序排列的. 2.在hibernate中要持久化集合属性时必须将其声明为接口,如 private Se ...

  2. Python 中 mySQL 中的语句

    class DeleteInventorybusiness(BaseBusiness): def DeleteInventory(self,Delete_goodsID): DeleteInvento ...

  3. 安装VMware workstation遇到的两个问题:安装过程中的DLL问题和安装后打开需要的管理权限问题

    1.安装过程中遇到Microsoft runtime DLL安装程序未能完成安装的问题? 在遇到这个问题时不要点击确定,需要在开始菜单中输入%temp%,然后跳转到一个文件夹里,找到后缀为setup的 ...

  4. ASCII十进制转字符串的方法

    /// <summary> /// ASCII转字符串 /// </summary> /// <param name="asciiCode">A ...

  5. python+pycahrm+windows环境准备

    python安装教程和Pycharm安装详细教程 首先我们来安装python 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进 ...

  6. APS期刊投稿准备: REVTex格式

    APS是American Physics Society的简称.旗下比较有影响力的期刊有: "pra, prb, prc, prd, pre, prl, prstab, prstper, o ...

  7. iOS开发-继承特征详解

    面向对象的三大特性:封装,继承,多态. 1.继承 继承既能保证类的完整,又能简化代码. 把公共的方法和实例变量写在子类,子类只需要写父类独有的实例变量和方法即可. 继承是面向对象三大特性之一,合理的继 ...

  8. windows安装gcc编译器

    由于vc6.0对c语言编译不是很好,有些语句是正确的,但是编译却不能通过 所以决定在windows中安装gcc编译器来使用! http://www.cnblogs.com/cryinstall/arc ...

  9. 算法题丨3Sum Closest

    描述 Given an array S of n integers, find three integers in S such that the sum is closest to a given ...

  10. Mybatis和Hibernate本质区别和应用场景

    Hibernate:是一个标准ORM(对象关系映射)框架.入门门槛较高,不需要程序员写sql语句,sql语句自动生成,对sql语句优化.修改比较困难 应用场景:适用于需求变化不多的中小型项目,比如后台 ...