Codeforces Round #467 (div.2)
Codeforces Round #467 (div.2)
我才不会打这种比赛呢
(其实本来打算打的)
谁叫它推迟到了\(00:05\)
我爱睡觉
题解
A. Olympiad
翻译
给你若干人的成绩
让你划定一个分数线
使得所有不低于这个分数线的人都可以获奖
但是\(0\)分的人一定不能得奖
问你有多少种获奖情况
题解
\(sort+unique\) 然后判断一下最小值是不是\(0\)就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,a[500];
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
sort(&a[1],&a[n+1]);
int tot=unique(&a[1],&a[n+1])-a-1;
if(a[1]==0)tot--;
printf("%d\n",tot);
return 0;
}
B. Vile Grasshoppers
翻译
给定\(p,y\)
在\(2..y\)内找到一个最大值\(x\)
使得\(x\)不能被\(2..p\)整除
无解输出\(-1\)
题解
看到范围这么大。
真是吓死人
首先考虑一下怎么检查一个值\(x\)是否可行
当然不需要枚举\(2..p\)
最多只需要枚举到\(\sqrt x\)
如果有解,要么\(p\)很小,要么\(y\)很大
很容易就可以枚举出来
如果无解,\(p\)一定要很接近\(y\)
这样不需要枚举多少个数
复杂度\(O(???)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
ll ans=0;
int main()
{
int p,y;
cin>>p>>y;
for(int ans=y;ans>p;--ans)
{
bool fl=true;
for(int i=2;i<=p&&i*i<=ans;++i)
if(ans%i==0){fl=false;break;}
if(fl){cout<<ans<<endl;return 0;}
}
puts("-1");
return 0;
}
C. Save Energy!
翻译
有一个人要煮鸡吃
但是炉子每过\(k\)分钟就会自动关上
这个人每过\(d\)分钟会进厨房,如果炉子关上了他就会打开
炉子在打开的时候鸡只需要\(t\)分钟就可以煮熟
在关上的时候则需要\(2t\)分钟
问这个人多久以后可以吃到鸡
题解
这题很简单啊
首先如果\(K\%d=0\)就不用考虑了
否则我们一定能够找到一个最小的\(x\)
使得\(xd>K\)
这样子的话,我们发现开关状态以\(xd\)循环
接下来只要分类讨论就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
ll K,d,t;
int main()
{
cin>>K>>d>>t;t*=2;
if(K%d==0){cout<<t/2<<endl;return 0;}
ll st=K/d+1;
ll T=st*d;
ll ts=2*K+(T-K);
double ans=t/ts*T;t%=ts;
if(t<=2*K)ans+=t/2.0;
else
{
ans+=K;
t-=2*K;
ans+=t;
}
printf("%.10lf\n",ans);
return 0;
}
D. Sleepy Game
翻译
有两个人在玩一个游戏
有一个棋子和有向图
一开始棋子在某个位置
然后两个人轮流走
谁先走不了谁就输了
如果超过了\(10^6\)步则平局
但是现在第二个人睡觉去了
两个人都由第一个人操控
问第一个人能不能赢,如果能输出路径
否则输出平局或者必败
题解
首先考虑能不能赢
因为能不能赢
只和到达一个出度为\(0\)的点的路径的奇偶性有关
所以用一个\(BFS\)检查能否以某个奇偶性到达某个点
如果有出度为\(0\)的点满足条件,则输出路径
考虑平局,即能够到达某个环
第一步检查了能否到达
这样找到环以后判断一下就好
如果也不能平局,则必败,输出即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 120000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX*2];
int h[MAX],cnt=1,n,m,H[MAX],B;
int dis[MAX][2],zy[MAX][2];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
void outp(int now,int k,int w)
{
if(!(k==now&&!w))outp(now,zy[k][w],w^1);
printf("%d ",k);
}
bool bfs(int now)
{
queue<pair<int,int> >Q;
Q.push(make_pair(now,0));
dis[now][0]=1;
while(!Q.empty())
{
int u=Q.front().first,w=Q.front().second;Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v][w^1])continue;
zy[v][w^1]=u;
dis[v][w^1]=1;
Q.push(make_pair(v,w^1));
}
}
for(int i=1;i<=n;++i)
if(!H[i]&&dis[i][1])
{
puts("Win");outp(now,i,1);puts("");
return true;
}
return false;
}
int dfn[MAX],low[MAX],tim;
int S[MAX],top,G[MAX];
bool vis[MAX];
bool Ans;
void Tarjan(int u)
{
S[++top]=u;vis[u]=true;
dfn[u]=low[u]=++tim;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(vis[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int v,size=0;
do{v=S[top--];vis[v]=false;G[++size]=v;}while(u!=v);
if(size!=1)
for(int i=1;i<=size;++i)
if(dis[G[i]][0]||dis[G[i]][1])Ans=true;
}
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
{
H[i]=read();
for(int j=1;j<=H[i];++j)Add(i,read());
}
B=read();
if(bfs(B))return 0;
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
if(Ans)puts("Draw");
else puts("Lose");
return 0;
}
E. Lock Puzzle
翻译
给定一个串\(s\)和目标串\(s'\)
你每次都可以执行一个\(shift\)操作
执行\(shift(x)\)后
假设原来的串是\(s=AB\)
那么,现在的串变为了\(B^RA\)
其中,\(B\)的长度等于\(x\)
说白点,就是把后\(x\)个字符翻转后,放在字符串的最前面
(举个例子,原来是\(ababc\) ,执行\(shift(3)\)后,变为了\(cbaab\))
执行操作的次数不能超过\(6100\)次
无解输出\(-1\)
题解
我们假设前面已经匹配好了\(i-1\)位
现在匹配第\(j\)位
那么,现在当前串中找到一个和目标位置相同的字符,位置是\(pos\)
然后考虑\(shift\)操作
当然,只需要执行\(shift(n-pos),shift(1),shift(n)\)三次操作就行了
我们假设当前串是\(AcB\)其中\(c=s[pos]\)
\(shift(n-pos)\)之后\(B^RAc\)
\(shift(1)\)之后\(cB^RA\)
\(shift(n)\)之后\(A^RBc\)
这样的话,我们发现后面的位置就不会再变化了
而每次我们都把当前的目标字符给挪到了最后一个位置
这样执行\(3n\)次操作之后就可以得到目标串了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 5000
int n,a[26],b[26];
char s[MAX],ss[MAX];
char s1[MAX],s2[MAX];
vector<int> ans;
void shift(char *s,int x)
{
int t1=0,t2=0;
for(int i=n-x+1;i<=n;++i)s2[++t2]=s[i];
reverse(&s2[1],&s2[t2+1]);
for(int i=1;i<=n-x;++i)s1[++t1]=s[i];
for(int i=1;i<=x;++i)s[i]=s2[i];
for(int i=1;i<=t1;++i)s[i+t2]=s1[i];
ans.push_back(x);
}
int main()
{
scanf("%d",&n);
scanf("%s",s+1);
scanf("%s",ss+1);
for(int i=1;i<=n;++i)a[s[i]-97]++,b[ss[i]-97]++;
for(int i=0;i<26;++i)if(a[i]!=b[i]){puts("-1");return 0;}
for(int i=1;i<=n;++i)
{
int pos;
for(int j=1;j<=n;++j)
if(s[j]==ss[i]){pos=j;break;}
shift(s,n-pos);shift(s,1);shift(s,n);
}
printf("%d\n",(int)(ans.size()));
for(int i=0;i<ans.size();++i)
printf("%d ",ans[i]);
return 0;
}
Codeforces Round #467 (div.2)的更多相关文章
- Codeforces Round #467 (Div. 2) B. Vile Grasshoppers
2018-03-03 http://codeforces.com/problemset/problem/937/B B. Vile Grasshoppers time limit per test 1 ...
- Codeforces Round #467 (Div. 1) B. Sleepy Game
我一开始把题目看错了 我以为是博弈.. 这题就是一个简单的判环+dfs(不简单,挺烦的一题) #include <algorithm> #include <cstdio> #i ...
- Codeforces Round #467 (Div. 1). C - Lock Puzzle
#include <algorithm> #include <cstdio> #include <cstring> #include <iostream> ...
- Codeforces Round #467 Div. 1
B:显然即相当于能否找一条有长度为奇数的路径使得终点出度为0.如果没有环直接dp即可.有环的话可以考虑死了的spfa,由于每个点我们至多只需要让其入队两次,复杂度变成了优秀的O(kE).事实上就是拆点 ...
- Codeforces Round #467 (Div. 2) E -Lock Puzzle
Lock Puzzle 题目大意:给你两个字符串一个s,一个t,长度<=2000,要求你进行小于等于6100次的shift操作,将s变成t, shift(x)表示将字符串的最后x个字符翻转后放到 ...
- Codeforces Round #467 (Div. 2) B. Vile Grasshoppers[求去掉2-y中所有2-p的数的倍数后剩下的最大值]
B. Vile Grasshoppers time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #467 (Div. 2) A. Olympiad[输入一组数,求该数列合法的子集个数]
A. Olympiad time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...
- Codeforces Round #467 Div.2题解
A. Olympiad time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
随机推荐
- SparkSteaming运行流程分析以及CheckPoint操作
本文主要通过源码来了解SparkStreaming程序从任务生成到任务完成整个执行流程以及中间伴随的checkpoint操作 注:下面源码只贴出跟分析内容有关的代码,其他省略 1 分析流程 应用程序入 ...
- 基于Ado.Net的日志组件
软件开发,离不开对日志的操作,它可以帮助我们查找和检测问题.好的日志组件可以对于整个系统来说,至关重要 在NaviSoft产品中,日志组件也占有非常重要的份量.如下图所示,是组件的Db表结构设计 图- ...
- P2P技术如何将实时视频直播带宽降低75%?
本文内容来自学霸君资深架构师袁荣喜的技术分享. 1.前言 实时视频直播经过去年的千播大战后已经成为互联网应用的标配技术,但直播平台的成本却一直居高不下,各个平台除了挖主播.挖网红以外,其背后高额的带宽 ...
- java-redis字符类数据操作示例(一)
对于大部分程序猿来讲,学习新知识重在编码实践,于我也是这样.现在初识redis,一直看文章难免感觉是浮光掠影,印象不深.所以间隙中,将自己的测试代码整理成博客,旨在加深记忆并提醒自己对待编程要用心沉下 ...
- 将Object对象转换成Map 属性名和值的形式
将Java对象转换成Map的键值对形式 代码: package cn.lonelcoud.util; import com.sun.deploy.util.StringUtils; import ja ...
- MysqL碎片整理优化
先来说一下什么是碎片,怎么知道碎片有多大! 简单的说,删除数据必然会在数据文件中造成不连续的空白空间,而当插入数据时,这些空白空间则会被利用起来.于是造成了数据的存储位置不连续,以及物理存储顺序与理论 ...
- Java基础系列--集合之ArrayList
原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/8494618.html 一.概述 ArrayList是Java集合体系中最常使用,也是最简单 ...
- 【spring-boot】spring aop 面向切面编程初接触
众所周知,spring最核心的两个功能是aop和ioc,即面向切面,控制反转.这里我们探讨一下如何使用spring aop. 1.何为aop aop全称Aspect Oriented Programm ...
- Flask Ansible自动化平台搭建(持续更新)
一:简介 使用Ansible + Flask + Celery搭建web平台. 目录结构 . ├── ansible_api │ ├── ansible_playbook_inventory.py ...
- Redis持久化存储
Redis是一个支持持久化的内存数据库,也就是说redis需要经常将内存中的数据同步到磁盘来保证持久化.redis支持四种持久化方式,一是 Snapshotting(快照)也是默认方式:二是Appen ...