散点图进阶,结合箱体图与直方图对数据形成全面的认识

描述数据集中趋势的分析量:

均值 - 全部数据的算术平均值

众数 - 一组数据中出现次数最多的变量值

中位数 - 一组数据经过顺序排列后处于中间位置上的变量值

描述数据离散程度的分析量:

方差 - 一组数据各变量值与其平均值离差平方和的平均数

标准差 - 方差的平方根

偏态 - 描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。偏度 = 三阶中心距 / 标准差的三次方

峰度 - 描述总体中所有取值分布形态陡缓程度的统计量,这个统计量需要与正态分布相比较。 峰度 = 四阶中心距 / 方差平方(标准差四次方) - 3

描述性分析数据的计算:

 # 准备数据
import numpy as np
import matplotlib.pyplot as plt n = 1000
x = np.random.randn(n)
y = [int((item)*100) for item in np.random.randn( n )] #100以内的正整数随机数 # 均值μ
mu = np.mean(y)
# 标准差δ sigma = np.sqrt(np.sum(np.square( y - mu ))/n)
sigma = np.std(y)
# 峰度(公式准确度待确认)
kurtosis = np.sum(np.power((y - mu),4))/(n) # 四阶中心距
kurtosis = kurtosis / np.power(sigma,4)-3 # 峰度 = 四阶中心距 / 方差平方(标准差四次方) - 3
# 偏度
skewness = np.sum(np.power((y - mu),3))/(n) # 三阶中心距
skewness = skewness / np.power(sigma,3) # 偏度 = 三阶中心距 / 标准差的三次方 print(mu, sigma,skewness, kurtosis)

结果:

-0.944 105.50647783 0.0750892544722 -0.171492308767

图表显示

 # 图表显示
fig = plt.figure( figsize = ( 8, 6 )) # 设置图表大小
#设置图表的大小:[左, 下, 宽, 高] 规定的矩形区域 (全部是0~1之间的数,表示比例)
rect_1 = [0.15, 0.30, 0.7, 0.55]
rect_2 = [0.85, 0.30, 0.15, 0.55]
rect_3 = [0.15, 0.05, 0.7, 0.2]
fig_1 = plt.axes(rect_1) # 第一个图表
fig_2 = plt.axes(rect_2) # 第二个图表
fig_3 = plt.axes(rect_3) # 第三个图表
#设置图表公共变量
title_size = 13
inner_color = 'cyan'
outer_color = 'teal'
# 第一个图表:散点图
fig_1.scatter( x, y, s = 20, color = inner_color, edgecolor = outer_color, alpha = 0.6)
fig_1.set_title('散点图 Scatter', fontsize = title_size)
fig_1.set_ylim( min(y),max(y)+50 )
fig_1.grid(True) # 第二个图表:箱体图
fig_2.boxplot(y,
widths = 0.55,
patch_artist = True, # 要求用自定义颜色填充盒形图,默认白色填充
boxprops = {'color':outer_color,'facecolor':inner_color, }, # 设置箱体属性,填充色和边框色
flierprops = {'marker':'o','markerfacecolor':inner_color,'color':outer_color,}, # 设置异常值属性,点的形状、填充色和边框色
meanprops = {'marker':'h','markerfacecolor':outer_color}, # 设置均值点的属性,点的形状、填充色
medianprops = {'linestyle':'-','color':'red'} # 设置中位数线的属性,线的类型和颜色
)
fig_2.set_ylim( fig_1.get_ylim()) #设置箱体图与散点图同一纵坐标轴
fig_2.get_yaxis().set_visible(False) #关闭坐标轴
fig_2.get_xaxis().set_visible(False) #关闭坐标轴
# 去除边框显示
remove_col = ['top','bottom','left','right']
for item in remove_col:
fig_2.spines[item].set_visible(False)
fig_2.spines[item].set_position(('data',0))
fig.text(0.86, 0.84,'箱体图 Boxplot', fontsize = title_size ) # 第三个图表:直方图
n, bins, patches = fig_3.hist( y, color = inner_color, alpha = 0.8, edgecolor = outer_color )
fig_3.set_ylim([0,max(n)+50])
fig_3.spines['top'].set_visible(False) # 去除边框显示
fig_3.spines['top'].set_position(('data',0)) # 去除边框刻度显示
fig_3.spines['right'].set_color('none') # 去除边框显示
fig_3.spines['right'].set_position(('data',0)) # 去除边框刻度显示
fig.text(0.17, 0.23,'直方图 Hist', fontsize = title_size ) # 文本信息
fig.text(0.9, .20, '均值 $\mu = {0:.2f}$'.format(mu))
fig.text(0.9, .15, '标准差 $\sigma = {0:.2f}$'.format(sigma))
fig.text(0.9, .10, '偏度 $\gamma 1 = {0:.2f}$'.format(skewness))
fig.text(0.9, .05, '峰度 $\gamma 2 = {0:.2f}$'.format(kurtosis))
plt.show()

结果:

用Python学分析:集中与分散的更多相关文章

  1. 用Python学分析 - 单因素方差分析

    单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...

  2. 用Python学分析 - 二项分布

    二项分布(Binomial Distribution)对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布- 两分类变量并非一定会服从二项分布- 模拟伯努利试验中n次独立的 ...

  3. 用Python学分析 - t分布

    1. t分布形状类似于标准正态分布2.  t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平3.  对于大型样本,t-值与z-值之间的差别很小 作用- t分布纠正了未知的真实标 ...

  4. 用Python学分析 - 正态分布

    正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...

  5. 用Python学分析 - 散点图

    # 运用散点图对数据分布得到直观的认识 import numpy as np import matplotlib.pyplot as plt # 设计 x, y 轴 n = 10000 x = np. ...

  6. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  7. 《用 Python 学微积分》笔记 2

    <用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...

  8. Python学到什么程度就可以去找工作?掌握这4点足够了!

    大家在学习Python的时候,有人会问“Python要学到什么程度才能出去找工作”,对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来,一般都不会有什么问 ...

  9. Python学到什么程度才可以去找工作?掌握这4点足够了!

    大家在学习Python的时候,有人会问"Python要学到什么程度才能出去找工作",对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来 ...

随机推荐

  1. RxJava 2.x 使用最佳实践

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/76443347 本文出自[赵彦军的博客] 以前写过 Rxjava 系列教程, 如下所 ...

  2. SQL Server 表的管理_关于事务的处理的详解(案例代码)

    SQL Server 表的管理_关于事务的处理的详解(案例代码) 一.SQL 事务 1.1SQL 事务 ●事务是在数据库上按照一定的逻辑顺序执行的任务序列,既可以由用户手动执行,也可以由某种数据库程序 ...

  3. React+ANTD项目使用后的一些关于生命周期比较实用的心得

    1. constructor() constructor(props){ super(props) this.state=({ }) } 一定先写super  可以接收从父组件传来的值 父组件往子组件 ...

  4. 关于cannot find module 'xxxx’的一个可能解决方法。

    关于cannot find module 'xxxx'的一个可能解决方法. 由于学习angular2,想单独学习一下typescript下angular2使用的'rxjs'是怎么使用的,我用npm自己 ...

  5. Java 面试知识点解析(二)——高并发编程篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  6. Java容器:List

    集合类的层次关系 List接口简介 List的常用方法 List实例 Vector ArrayList Vector和ArrayList的扩容 LinkedList 参考文章 今天开始更新Java集合 ...

  7. 14.Ubuntu基本命令

    vi编辑器 {  :上一段diamante } :下一段代码 dw: 删除一个单词 权限 前面的分三组 第一: 文件拥有者的权限 第二:同组者拥有的权限 第三:其他人拥有的权限 前面“-”表示是文件 ...

  8. mysql 基础语法掌握~ This is just the beginning.

    create database 数据库名; drop database 数据库名; use 数据库名; create table table_name ( column_name, column_ty ...

  9. Win32项目生成的程序exe图标显示异常的问题

    问题 如图: 用VS2013生成exe执行文件时发现的问题,起初以为是没添加ico图像的最小尺寸,后来查看ico并不是这个问题. Baidu.Google了半天找到原因:文件资源管理器的图标缓存bug ...

  10. PAT1049:Counting Ones

    1049. Counting Ones (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The tas ...