用Python学分析:集中与分散
散点图进阶,结合箱体图与直方图对数据形成全面的认识
描述数据集中趋势的分析量:
均值 - 全部数据的算术平均值
众数 - 一组数据中出现次数最多的变量值
中位数 - 一组数据经过顺序排列后处于中间位置上的变量值
描述数据离散程度的分析量:
方差 - 一组数据各变量值与其平均值离差平方和的平均数
标准差 - 方差的平方根
偏态 - 描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。偏度 = 三阶中心距 / 标准差的三次方
峰度 - 描述总体中所有取值分布形态陡缓程度的统计量,这个统计量需要与正态分布相比较。 峰度 = 四阶中心距 / 方差平方(标准差四次方) - 3
描述性分析数据的计算:
# 准备数据
import numpy as np
import matplotlib.pyplot as plt n = 1000
x = np.random.randn(n)
y = [int((item)*100) for item in np.random.randn( n )] #100以内的正整数随机数 # 均值μ
mu = np.mean(y)
# 标准差δ sigma = np.sqrt(np.sum(np.square( y - mu ))/n)
sigma = np.std(y)
# 峰度(公式准确度待确认)
kurtosis = np.sum(np.power((y - mu),4))/(n) # 四阶中心距
kurtosis = kurtosis / np.power(sigma,4)-3 # 峰度 = 四阶中心距 / 方差平方(标准差四次方) - 3
# 偏度
skewness = np.sum(np.power((y - mu),3))/(n) # 三阶中心距
skewness = skewness / np.power(sigma,3) # 偏度 = 三阶中心距 / 标准差的三次方 print(mu, sigma,skewness, kurtosis)
结果:
-0.944 105.50647783 0.0750892544722 -0.171492308767
图表显示
# 图表显示
fig = plt.figure( figsize = ( 8, 6 )) # 设置图表大小
#设置图表的大小:[左, 下, 宽, 高] 规定的矩形区域 (全部是0~1之间的数,表示比例)
rect_1 = [0.15, 0.30, 0.7, 0.55]
rect_2 = [0.85, 0.30, 0.15, 0.55]
rect_3 = [0.15, 0.05, 0.7, 0.2]
fig_1 = plt.axes(rect_1) # 第一个图表
fig_2 = plt.axes(rect_2) # 第二个图表
fig_3 = plt.axes(rect_3) # 第三个图表
#设置图表公共变量
title_size = 13
inner_color = 'cyan'
outer_color = 'teal'
# 第一个图表:散点图
fig_1.scatter( x, y, s = 20, color = inner_color, edgecolor = outer_color, alpha = 0.6)
fig_1.set_title('散点图 Scatter', fontsize = title_size)
fig_1.set_ylim( min(y),max(y)+50 )
fig_1.grid(True) # 第二个图表:箱体图
fig_2.boxplot(y,
widths = 0.55,
patch_artist = True, # 要求用自定义颜色填充盒形图,默认白色填充
boxprops = {'color':outer_color,'facecolor':inner_color, }, # 设置箱体属性,填充色和边框色
flierprops = {'marker':'o','markerfacecolor':inner_color,'color':outer_color,}, # 设置异常值属性,点的形状、填充色和边框色
meanprops = {'marker':'h','markerfacecolor':outer_color}, # 设置均值点的属性,点的形状、填充色
medianprops = {'linestyle':'-','color':'red'} # 设置中位数线的属性,线的类型和颜色
)
fig_2.set_ylim( fig_1.get_ylim()) #设置箱体图与散点图同一纵坐标轴
fig_2.get_yaxis().set_visible(False) #关闭坐标轴
fig_2.get_xaxis().set_visible(False) #关闭坐标轴
# 去除边框显示
remove_col = ['top','bottom','left','right']
for item in remove_col:
fig_2.spines[item].set_visible(False)
fig_2.spines[item].set_position(('data',0))
fig.text(0.86, 0.84,'箱体图 Boxplot', fontsize = title_size ) # 第三个图表:直方图
n, bins, patches = fig_3.hist( y, color = inner_color, alpha = 0.8, edgecolor = outer_color )
fig_3.set_ylim([0,max(n)+50])
fig_3.spines['top'].set_visible(False) # 去除边框显示
fig_3.spines['top'].set_position(('data',0)) # 去除边框刻度显示
fig_3.spines['right'].set_color('none') # 去除边框显示
fig_3.spines['right'].set_position(('data',0)) # 去除边框刻度显示
fig.text(0.17, 0.23,'直方图 Hist', fontsize = title_size ) # 文本信息
fig.text(0.9, .20, '均值 $\mu = {0:.2f}$'.format(mu))
fig.text(0.9, .15, '标准差 $\sigma = {0:.2f}$'.format(sigma))
fig.text(0.9, .10, '偏度 $\gamma 1 = {0:.2f}$'.format(skewness))
fig.text(0.9, .05, '峰度 $\gamma 2 = {0:.2f}$'.format(kurtosis))
plt.show()
结果:
用Python学分析:集中与分散的更多相关文章
- 用Python学分析 - 单因素方差分析
单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...
- 用Python学分析 - 二项分布
二项分布(Binomial Distribution)对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布- 两分类变量并非一定会服从二项分布- 模拟伯努利试验中n次独立的 ...
- 用Python学分析 - t分布
1. t分布形状类似于标准正态分布2. t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平3. 对于大型样本,t-值与z-值之间的差别很小 作用- t分布纠正了未知的真实标 ...
- 用Python学分析 - 正态分布
正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...
- 用Python学分析 - 散点图
# 运用散点图对数据分布得到直观的认识 import numpy as np import matplotlib.pyplot as plt # 设计 x, y 轴 n = 10000 x = np. ...
- 《用 Python 学微积分》笔记 3
<用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...
- 《用 Python 学微积分》笔记 2
<用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...
- Python学到什么程度就可以去找工作?掌握这4点足够了!
大家在学习Python的时候,有人会问“Python要学到什么程度才能出去找工作”,对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来,一般都不会有什么问 ...
- Python学到什么程度才可以去找工作?掌握这4点足够了!
大家在学习Python的时候,有人会问"Python要学到什么程度才能出去找工作",对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来 ...
随机推荐
- iphone连接电脑itunes之后 C盘突然小很多被占了很多空间
很有可能是你的iTunes开启了自动备份,把iphone上的数据都备份到了电脑上,而默认目录就是在C盘.我们可以找到并删除它,换C盘一个清白. 我的路径参考如下: C:\Users\scc\AppDa ...
- Ubuntu编译安装crtmp-server
下载源码 从GitHub上下载:https://github.com/j0sh/crtmpserver.git 编译安装 apt-get install cmake apt-get install l ...
- REBEL IDEA热部署插件使用
启动 一.在IDEA 的Plugins中搜索Jrebel for intellij 插件 二.https://my.jrebel.com/account/how-to-activate 注册或者使用f ...
- 运用jieba库分词
代码: 统计出团队中文简介中词频 import jieba txt=open("C:\\Users\\Administrator\\Desktop\\介绍.txt","r ...
- Python 装饰器(Decorator)
装饰器的语法为 @dec_name ,置于函数定义之前.如: import atexit @atexit.register def goodbye(): print('Goodbye!') print ...
- js流程语句
一.跳转语句1.break; 终止整个循环,不再进行判断2.continue; 终止本次循环,接着去判断是否执行下次循环 二.选择(判断)结构1.if 如果 if(条件1) ...
- python捕获异常、处理异常
https://blog.csdn.net/jmilk/article/details/50047457
- Window 下mysql binlog开启及查看,mysqlbinlog
查看是否开启了binlog: win+r => cmd => 连接mysql=>show variables like 'log_%'; mysql> show variabl ...
- Java 8 Optional类深度解析(转)
经常会遇到这样的问题,调用一个方法得到了返回值却不能直接将返回值作为参数去调用别的方法.我们首先要判断这个返回值是否为null,只有在非空的前提下才能将其作为其他方法的参数. 新版本的Java,比如J ...
- mysql事务隔离级别详解和实战
A事务做了操作 没有提交 对B事务来说 就等于没做 获取的都是之前的数据 但是 在A事务中查询的话 查到的都是操作之后的数据 没有提交的数据只有自己看得到,并没有update到数据库. 查看InnoD ...