树dp

定义f[i][j]为i在其已合并子树内排名为j的方案数

O(n2)进行子树合并

转移时枚举他在已合并子树中的排名j和新合并子树中的排名k+1

当他比他儿子大的时候$f[x][j+k]=f[x][j]*{\sum{_{i}^{k}}}f[son][i]*C{_{j+k-1}^{j-1}}*C{_{size[x]+size[son]-j-k}^{size[x]-j}}$

后面两个组合数可以看作是有j+k-1个比他小的要选出j-1个放原子树中的,剩下的放新子树中的,后面就是比他大的,同理

当他比他儿子小的时候只需要把前缀和转化成后缀和即可。

代码

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define mod 1000000007
#define LL long long
#define N 1050
using namespace std;
int e=,head[N];
struct edge{
int v,w,next;
}ed[*N];
void add(int u,int v,int w){
ed[e].v=v;ed[e].w=w;
ed[e].next=head[u];
head[u]=e++;
}
LL C[N][N],f[N][N],sum[N][N],g[N];
int fa[N],size[N];
void dfs(int x){
size[x]=;f[x][]=;
for(int i=head[x];i;i=ed[i].next){
int v=ed[i].v;
if(v==fa[x])continue;
fa[v]=x;dfs(v);
for(int j=;j<=size[x]+size[v];j++)g[j]=;
for(int j=;j<=size[x];j++){
for(int k=;k<=size[v];k++){
if(ed[i].w==)
(g[j+k]+=f[x][j]*sum[v][k]%mod*C[j+k-][j-]%mod*C[size[x]+size[v]-j-k][size[x]-j]%mod)%=mod;
else
(g[j+k]+=f[x][j]*(sum[v][size[v]]-sum[v][k]+mod)%mod*C[j+k-][j-]%mod*C[size[x]+size[v]-j-k][size[x]-j]%mod)%=mod;
}
}
size[x]+=size[v];
for(int j=;j<=size[x];j++)f[x][j]=g[j];
}
for(int i=;i<=size[x];i++)
sum[x][i]=(sum[x][i-]+f[x][i])%mod;
}
void init(){
e=;
memset(head,,sizeof head);
memset(sum,,sizeof sum);
memset(size,,sizeof size);
memset(fa,,sizeof fa);
memset(f,,sizeof f);
}
int n;
char getc(){
char ch=getchar();
while((ch!='<')&&(ch!='>'))ch=getchar();
return ch;
}
signed main(){
int T;
scanf("%d",&T);
for(int i=;i<=;i++){
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%mod;
}
while(T--){
init();
scanf("%d",&n);
for(int i=,u,v;i<n;i++){
scanf("%d",&u);char ch=getc();scanf("%d",&v);
u++;v++;
if(ch=='<'){add(u,v,);add(v,u,);}
if(ch=='>'){add(u,v,);add(v,u,);}
}
dfs();
printf("%lld\n",sum[][size[]]);
}
return ;
}

bzoj3167

bzoj 3167 SAO的更多相关文章

  1. [BZOJ 3167][HEOI 2013]SAO

    [BZOJ 3167][HEOI 2013]SAO 题意 对一个长度为 \(n\) 的排列作出 \(n-1\) 种限制, 每种限制形如 "\(x\) 在 \(y\) 之前" 或 & ...

  2. BZOJ 3167: [Heoi2013]Sao

    3167: [Heoi2013]Sao Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 96  Solved: 36[Submit][Status][D ...

  3. BZOJ 3167 [Heoi2013]Sao ——树形DP

    BZOJ4824的强化版. 改变枚举的方案,使用前缀和进行DP优化. 然后复杂度就是$O(n^2)$了. #include <map> #include <cmath> #in ...

  4. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

  5. [提升性选讲] 树形DP进阶:一类非线性的树形DP问题(例题 BZOJ4403 BZOJ3167)

    转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7337179.html 树形DP是一种在树上进行的DP相对比较难的DP题型.由于状态的定义多种多样,因此解法也五 ...

  6. 3167: [Heoi2013]Sao [树形DP]

    3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...

  7. 【BZOJ3167】[HEOI2013]SAO(动态规划)

    [BZOJ3167][HEOI2013]SAO(动态规划) 题面 BZOJ 洛谷 题解 显然限制条件是一个\(DAG\)(不考虑边的方向的话就是一棵树了). 那么考虑树型\(dp\),设\(f[i][ ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

随机推荐

  1. 学习Selenium遇到的问题和解决方案

    问题1:IE驱动位数问题,未安装对应的IE,打不开IE浏览器(已解决20180323) 使用Selenium启动IE浏览器的时候,报错,报错信息如下 org.openqa.selenium.remot ...

  2. [Domino]Java访问Domino必需配置的服务器设置

    应用场景 我们需要通过Java远程访问IBM Lotus Domino R6和R5服务器,从中获取用户邮箱的邮件信息等关键数据.我们不需要提供每一个用户密码以及ID文件. 我们的具体做法是,通过Dom ...

  3. redis主从,哨兵回忆手册

    redis主从 持久化的开启与主从集群是否生效无关系 Slave Server同样是以非阻塞的方式完成数据同步.在同步期间,如果有客户端提交查询请求,Redis则返回同步之前的数据(注意初次同步则会阻 ...

  4. python结巴(jieba)分词

    python结巴(jieba)分词 一.特点 1.支持三种分词模式: (1)精确模式:试图将句子最精确的切开,适合文本分析. (2)全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能解 ...

  5. scons脚本示例

    import os def list_dir(dir): all_dirs = [] for root, dirs, files in os.walk('./', True): for name in ...

  6. Ionic Framework - Getting 'ionic start [appName]' Working Behind a Proxy

    This is a quick hacky way to get the ionic start [appName] command working from behind a proxy. I ra ...

  7. 自建Nuget服务器

    前言 [PS:原文手打,转载说明出处,博客园] java有Maven,.net有Nuget,概念就不一一阐述了,自己百度.下面直接进入正题 搭建Nuget服务器 作案工具 工具:vs2017,Nuge ...

  8. Java Web Without SSM(前言)

    是的,Spring,Mybaties确实给我们带来了方便的轻量级JavaWeb开发,但是,对于大部分中小系统来说,分层,框架,规范,已经成为一种累赘.实际的程序开发过程中,大部分时间都花在了" ...

  9. 遍历php数组的几种方法

    第一.foreach() foreach()是一个用来遍历数组中数据的最简单有效的方法. <?php $urls= array('aaa','bbb','ccc','ddd'); foreach ...

  10. 【转】Javascript全局变量var与不var的区别

    相信你对全局变量一定不陌生,在函数作用域里用a=1这种形式定义的变量会是一个全局变量,在全局作用域里,用下面3种形式都可以创建对全局可见的命名: <script> var a = 1; b ...