BZOJ 1815: [Shoi2006]color 有色图(Polya定理)
题意
如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图。
如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得两张图对应的边的颜色是一样的,我们就称这两张有色图是同构的。
对于计算所有顶点数为 \(n\) ,颜色种类不超过 \(m\) 的图,最多有几张是两两不同构的图。
数据范围
\(n \le 53, 1 \le m \le 1000\)
题解
神仙题qwq
我们考虑对于点置换与其对应的边置换的关系:
对于不处在循环中的点对:
假设第一个循环长度为 \(l_1\) 第二个循环长度为 \(l_2\) ,那么循环节长度就是 \(\mathrm{lcm}(l_1, l_2)\) 。
一共有 \(l_1\times l_2\) 对点对,每个点对所处的循环节长度都是一样的,那么循环节个数就是 \(\displaystyle \frac{l_1l_2}{\mathrm{lcm}(l_1, l_2)} = \gcd(l_1, l_2)\) 。
对于处在循环中的点对:
设循环长度为 \(l\) ,分奇偶讨论。
- \(l\) 为奇数,那么循环长度刚好是 \(l\) ,一共有 \(\displaystyle {l \choose2}\) 对点对,那么刚好就有 \(\displaystyle \frac{l - 1}2\) 个循环节。
- \(l\) 为偶数,上面那种情况之外,还有转 \(\displaystyle \frac l2\) 长度对应的循环节,那么一共有 \(\displaystyle\frac{ {l \choose 2} - \frac l2}{l} + 1 = \frac l2\) 个循环节。
设一开始点置换划分的周期为 \(l_1 \le l_2 \le \cdots \le l_k\) ,其中满足 \(\sum\limits _{i = 1}^{k} l_i = n\) 。
那么循环节的个数其实就是:
\]
我们显然可以枚举所有 \(l\) 的集合,不难发现这就是整数划分,\(53\) 的划分数并不大。。。
只剩下最后一个问题,就是有多少个长为 \(n\) 的排列对应到 \(l_1 \cdots l_k\) 这个点置换循环。
首先考虑可重排列计数,把 \(n\) 个数分给这些的方案为 \(\displaystyle \frac{n!}{\prod_{i=1}^{k} l_i!}\) 然后对于每个置换 \(i\) 内部是个圆排列,顺序有 \((l_i - 1)!\) 。然后循环的先后顺序是互不影响的,要除掉 \(c_i! (c_i = \sum_{j = 1}^{n}[l_j = i])\) 个。
也就是
\]
总结
对于 \(Polya\) 定理,常常要找循环节个数。对于特殊的置换,我们常常可以利用循环长度是一样的性质,然后用总元素 \(/\) 循环长度,得到循环节个数。
代码
#include <bits/stdc++.h>
#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
using namespace std;
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; }
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("1815.in", "r", stdin);
freopen ("1815.out", "w", stdout);
#endif
}
const int N = 65;
int n, m, Mod;
int cir[N], len, ans = 0;
inline int fpm(int x, int power) {
int res = 1;
for (; power; power >>= 1, x = 1ll * x * x % Mod)
if (power & 1) res = 1ll * res * x % Mod;
return res;
}
void Dfs(int cur, int rest, int res) {
if (!rest) {
int coef = 1, cnt = 1;
For (i, 1, len) {
if (cir[i] != cir[i - 1]) cnt = 1; else ++ cnt;
coef = 1ll * coef * cnt % Mod * cir[i] % Mod;
}
ans = (ans + 1ll * fpm(m, res) * fpm(coef, Mod - 2)) % Mod; return;
}
For (i, cur, rest) {
int tmp = i / 2; For (j, 1, len) tmp += __gcd(i, cir[j]);
cir[++ len] = i; Dfs(i, rest - i, res + tmp); -- len;
}
}
int main () {
File();
n = read(); m = read(); Mod = read();
Dfs(1, n, 0);
printf ("%d\n", ans);
return 0;
}
BZOJ 1815: [Shoi2006]color 有色图(Polya定理)的更多相关文章
- BZOJ 1815: [Shoi2006]color 有色图 [Polya DFS 重复合并]
传送门 题意: 染色图是无向完全图,且每条边可被染成k种颜色中的一种.两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同.问N个顶点,k种颜色,本质不同的染色图个数(模质数 ...
- bzoj 1815: [Shoi2006]color 有色图 置换群
1815: [Shoi2006]color 有色图 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 136 Solved: 50[Submit][Stat ...
- bzoj 1478: Sgu282 Isomorphism && 1815: [Shoi2006]color 有色图【dfs+polya定理】
参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题 首先无向完全图是个若干点的置换 ...
- BZOJ1815: [Shoi2006]color 有色图
BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 ...
- [SHOI2006]color 有色图[群论、组合计数]
题意 用 \(m\) 种颜色,给 \(n\) 个点的无向完全图的 \(\frac{n(n-1)}{2}\) 条边染色,两种方案相同当且仅当一种方案交换一些点的编号后可以变成另一种方案.问有多少本质不同 ...
- POJ2154 Color 【Polya定理 + 欧拉函数】
题目 Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). ...
- poj 2154 Color【polya定理+欧拉函数】
根据polya定理,答案应该是 \[ \frac{1}{n}\sum_{i=1}^{n}n^{gcd(i,n)} \] 但是这个显然不能直接求,因为n是1e9级别的,所以推一波式子: \[ \frac ...
- [BZOJ1478&1488&1815][SGU282]Isomorphism:Polya定理
分析 三倍经验题,本文以[BZOJ1478][SGU282]Isomorphism为例展开叙述,主体思路与另外两题大(wan)致(quan)相(yi)同(zhi). 这可能是博主目前写过最长也是最认真 ...
- 洛谷 P4128: bzoj 1815: [SHOI2006]有色图
题目传送门:洛谷 P4128. 计数好题,原来是 13 年前就出现了经典套路啊.这题在当年应该很难吧. 题意简述: \(n\) 个点的完全图,点没有颜色,边有 \(m\) 种颜色,问本质不同的图的数量 ...
随机推荐
- 关于C#chart图表实现多条折线动态绑定数据的问题
之前就已经实现了多条折线绑定数据并显示,但不是动态绑定,而是每一条数据都要进行一次绑定,个人觉得在解决实际问题时,这样的解决方法过于笨重且缺乏扩展性,这次主要是对代码进行优化,实现写一遍代码,无论数据 ...
- MyBatis之整合Spring
MyBatis之整合Spring 整合思路: 1.SqlSessionFactory对象应该放到spring容器中作为单例存在 2.传统dao的开发方式中,应该从spring容器中获得sqlSessi ...
- Django 传递额外参数及 URL别名
传递额外参数到视图函数中 在 urls.py 文件中添加下面内容 from django.conf.urls import url urlpatterns = [ url(r'index', view ...
- 洛谷P2664 树上游戏(点分治)
题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...
- GDAL坐标转换
一.引言 最近研究了一下GIS.测绘学的坐标转换的问题,感觉大部分资料专业性太强,上来就是一通专业性论述:但感觉对于相关从业者来说,其实不必了解那么多背景知识的:就通过GDAL这个工具,来简单总结下坐 ...
- 报表平台对CRM系统价值几何
CRM系统即客户关系管理系统,其利用信息科学技术实现市场营销.销售.服务等活动自动化,使企业能高效地为客户提供周到的服务,以提升客户满意度与忠诚度为目的的一种管理经营方式.而CRM报表平台作为一个枢纽 ...
- python 生成18年写过的博客词云
文章链接:https://mp.weixin.qq.com/s/NmJjTEADV6zKdT--2DXq9Q 回看18年,最有成就的就是有了自己的 博客网站,坚持记录,写文章,累计写了36篇了,从一开 ...
- Python使用Plotly绘图工具,绘制面积图
今天我们来讲一下如何使用Python使用Plotly绘图工具,绘制面积图 绘制面积图与绘制散点图和折线图的画法类似,使用plotly graph_objs 中的Scatter函数,不同之处在于面积图对 ...
- Git 密钥对处理
生成密钥对: ssh-keygen -t rsa cd .ssh ls id_rsa 私钥 id_rsa.pub 公钥
- Python基础之if判断,while循环,循环嵌套
if判断 判断的定义 如果条件满足,就做一件事:条件不满足,就做另一件事: 判断语句又被称为分支语句,有判断,才有分支: if判断语句基本语法 if语句格式: if 判断的条件: 条件成立后做的事 . ...