nyoj913 取石子(十) SG函数 + Nimm博弈
思路:
第一堆:SG = n % 3;
第二堆:无规律,打表即可,用hash比set快很多;
第三堆:SG = n;
第四堆:无规律
第五堆:SG = n % 2;
第六堆:SG = n % (i + 1 ),i表示第i堆;
AC代码:
#include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <utility> #include <string> #include <iostream> #include <map> #include <set> #include <vector> #include <queue> #include <stack> using namespace std; #define eps 1e-10 #define inf 0x3f3f3f3f #define PI pair<int, int> typedef long long LL; const int maxn = 1e3 + 5; void in(int &a) { char ch; while((ch=getchar()) < '0' || ch >'9'); for(a = 0; ch >= '0' && ch <= '9'; ch = getchar()) { a = a * 10 + ch - '0'; } } int f[100], SG[2][maxn], o[maxn]; void init() { set<int>s; f[0] = 1; f[1] = 2; SG[0][0] = SG[1][0] = 0; for(int i = 2; i < 100; ++i) f[i] = f[i-1] + f[i-2]; //斐波那契 for(int i = 1; i <= 1000; ++i) { s.clear(); for(int j = 0; j < 100; ++j) { if(f[j] > i) break; s.insert(SG[0][i-f[j]]); } for(int j = 0; j <= 1000; ++j) { if(!s.count(j)) { SG[0][i] = j; break; } } } //偶数 o[0] = 1; for(int i = 1; i <= 600; ++i) o[i] = i * 2; for(int i = 1; i <= 1000; ++i) { s.clear(); for(int j = 0; j < 550; ++j) { if(o[j] > i) break; s.insert(SG[1][i-o[j]]); } for(int j = 0; j <= 1000; ++j) { if(!s.count(j)) { SG[1][i] = j; break; } } } } int main() { init(); int n; while(scanf("%d", &n) == 1 && n) { int x, res = 0; for(int i = 1; i <= n; ++i) { in(x); switch(i){ case 1: res ^= x%3; break; case 2: res ^= SG[0][x]; break; case 3: res ^= x; break; case 4: res ^= SG[1][x]; break; case 5: res ^= x%2; break; default: res ^= x % (i+1); break; } } if(res) printf("Yougth\n"); else printf("Hrdv\n"); } return 0; }
如有不当之处欢迎指出!
nyoj913 取石子(十) SG函数 + Nimm博弈的更多相关文章
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 871 Solved: 365[Submit][Status][Discuss] Description ...
- BZOJ 1874 取石子游戏 - SG函数
Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...
- nyoj135 取石子(二) Nimm博弈
思路:计算每堆石子的SG值,然后异或得到总的SG值,如果SG=0则输,否则赢. 每堆石子的SG值等于m%(n+1),可以自己推算一下. AC代码 #include <cstdio> #in ...
- nyoj585 取石子(六) Nimm博弈
此题数据十分极限,需要优化,否则会超时.关于此题的不足:明明说的每堆石子数不超过100,我开一个105大小的数组想用哈希居然Runtime Error!! 后来看见有人说需要优化输入: void in ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- HDU 1848 Fibonacci again and again SG函数做博弈
传送门 题意: 有三堆石子,双方轮流从某堆石子中去f个石子,直到不能取,问先手是否必胜,其中f为斐波那契数. 思路: 利用SG函数求解即可. /* * @Author: chenkexing * @D ...
- HDU-1848-Fibonacci again and again(SG函数,博弈)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1848 题意: 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样 ...
- 【POJ1067】取石子游戏 (威佐夫博弈)
[题目] Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的 ...
随机推荐
- java面向对象基础(二)
*/ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...
- 安卓和IOS兼容问题
点击穿透 click延迟 scroll元素临界的bug android screen.w/h 不准 rem不准 scroll时动画失效 animate回调 最小字号限制 不同机型全屏自适应 andro ...
- shell第一篇
前两天不停的再看内核相关的内容,了解内核的形成.内核的执行流程.内核的作用,结果是舍近求远. 其实我只是想了解一下shell的工作,shell与内核有关,但并不需要我么真正去做什么,至少对于我这样额初 ...
- Java使用Openoffice将word、ppt转换为PDF
最近项目中要实现WORD的文件预览功能,我们可以通过将WORD转换成PDF或者HTML,然后通过浏览器预览. OpenOffice OpenOffice.org 是一套跨平台的办公室软件套件,能在 W ...
- 有关mysql的for update以及 死锁问题
一.先说锁的概念 锁级别: 1.行级锁: InnoDB引擎(也支持表级锁,默认是行级锁),开销大,加锁慢:会出现死锁.锁定粒度最小,发生锁冲突的概率最低,并发度最高. 2.表级锁:MylSAM引擎和M ...
- php动态编辑zlib扩展
linux系统上,在php已经编译安装的情况下,启用zlib扩展不是那么容易,需要动态编译 以下是编译步骤: cd ./ext/zlib mv config0.m4 config.m4 /usr/lo ...
- POJ置换群入门[3/3]
POJ 3270 Cow Sorting 题意: 一个序列变为升序,操作为交换两个元素,代价为两元素之和,求最小代价 题解: 看了黑书... 首先循环因子分解 一个循环完成的最小代价要么是循环中最小元 ...
- c语言中的register int
register int a=1; 明确声明必须要把变量存放在寄存器中,直到变量消失. 一般是默认register,大多数的情况下是不用写register
- ES6中let和闭包
在开始本文之前我们先来看一段代码 for(var i=0;i<10;i++){ arr[i]=function(){ return i; } } console.log(arr[3]());// ...
- [Python Study Notes]CS架构远程访问获取信息--Client端v1.0
更新内容: 1.添加entry栏默认ip和port口 2.修正退出功能 3.添加退出自动关闭窗口功能 4.优化cpu显示为固定保留两位小数 '''''''''''''''''''''''''''''' ...