机器学习中的相似性度量(Similarity Measurement)

在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。

采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。在其他领域也经常见到它的影子, 现在对常用的相似性度量作一个总结。


目录:

  • 1. 欧氏距离
  • 2. 曼哈顿距离
  • 3. 切比雪夫距离
  • 4. 闵可夫斯基距离
  • 5. 标准化欧氏距离
  • 6. 马氏距离
  • 7. 夹角余弦
  • 8. 汉明距离
  • 9. 杰卡德距离 & 杰卡德相似系数
  • 10. 相关系数 & 相关距离
  • 11. 信息熵

1. 欧氏距离(Euclidean Distance)

欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。

(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:

(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

  也可以用表示成向量运算的形式:

(4)Matlab计算欧氏距离

Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。

例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X,'euclidean')

结果:

D =

1.0000    2.0000    2.2361

2. 曼哈顿距离(Manhattan Distance)

从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(City Block distance)

(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离

(3) Matlab计算曼哈顿距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X, 'cityblock')

结果:

D =

1     2     3

3. 切比雪夫距离 ( Chebyshev Distance )

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。

(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的切比雪夫距离

  这个公式的另一种等价形式是

看不出两个公式是等价的?提示一下:试试用放缩法和夹逼法则来证明。

(3)Matlab计算切比雪夫距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的切比雪夫距离

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X, 'chebychev')

结果:

D =

1     2     2

4. 闵可夫斯基距离(Minkowski Distance)

闵氏距离不是一种距离,而是一组距离的定义。

(1) 闵氏距离的定义

两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

根据变参数的不同,闵氏距离可以表示一类的距离。

(2)闵氏距离的缺点

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

简单说来,闵氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

(3)Matlab计算闵氏距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的闵氏距离(以变参数为2的欧氏距离为例)

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X,'minkowski',2)

结果:

D =

1.0000    2.0000    2.2361

5. 标准化欧氏距离 (Standardized Euclidean distance )

(1)标准欧氏距离的定义

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:

  而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:

  标准化后的值 =  ( 标准化前的值  - 分量的均值 ) /分量的标准差

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)

(2)Matlab计算标准化欧氏距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的标准化欧氏距离 (假设两个分量的标准差分别为0.5和1)

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X, 'seuclidean',[0.5,1])

结果:

D =

2.0000    2.0000    2.8284

 

6. 马氏距离(Mahalanobis Distance)

(1)马氏距离定义

有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

 

而其中向量Xi与Xj之间的马氏距离定义为:

若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

也就是欧氏距离了。

  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

(2)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。

(3) Matlab计算(1 2),( 1 3),( 2 2),( 3 1)两两之间的马氏距离

X = [1 2; 1 3; 2 2; 3 1]

Y = pdist(X,'mahalanobis')

结果:

Y =

2.3452    2.0000    2.3452    1.2247    2.4495    1.2247

7. 夹角余弦(Cosine)

有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

夹角余弦的具体应用可以参阅参考文献[1]。

(3)Matlab计算夹角余弦

例子:计算(1,0)、( 1,1.732)、( -1,0)两两间的夹角余弦

X = [1 0 ; 1 1.732 ; -1 0]

D = 1- pdist(X, 'cosine')  % Matlab中的pdist(X, 'cosine')得到的是1减夹角余弦的值

结果:

D =

0.5000   -1.0000   -0.5000

8. 汉明距离(Hamming distance)

(1)汉明距离的定义

两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

(2)Matlab计算汉明距离

  Matlab中2个向量之间的汉明距离的定义为2个向量不同的分量所占的百分比。

例子:计算向量(0,0)、(1,0)、(0,2)两两间的汉明距离

X = [0 0 ; 1 0 ; 0 2];

D = PDIST(X, 'hamming')

结果:

D =

0.5000    0.5000    1.0000

9. 杰卡德相似系数(Jaccard similarity coefficient)

(1) 杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。

(2) 杰卡德距离

与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3) 杰卡德相似系数与杰卡德距离的应用

可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

p :样本A与B都是1的维度的个数

q :样本A是1,样本B是0的维度的个数

r :样本A是0,样本B是1的维度的个数

s :样本A与B都是0的维度的个数

那么样本A与B的杰卡德相似系数可以表示为:

这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

而样本A与B的杰卡德距离表示为:

(4)Matlab 计算杰卡德距离

Matlab的pdist函数定义的杰卡德距离跟我这里的定义有一些差别,Matlab中将其定义为不同的维度的个数占“非全零维度”的比例。

例子:计算(1,1,0)、(1,-1,0)、(-1,1,0)两两之间的杰卡德距离

X = [1 1 0; 1 -1 0; -1 1 0]

D = pdist( X , 'jaccard')

结果

D =

0.5000    0.5000    1.0000

10. 相关系数 ( Correlation coefficient )与相关距离(Correlation distance)

(1) 相关系数的定义

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

(2)相关距离的定义

(3)Matlab计算(1, 2 ,3 ,4 )与( 3 ,8 ,7 ,6 )之间的相关系数与相关距离

X = [1 2 3 4 ; 3 8 7 6]

C = corrcoef( X' )   %将返回相关系数矩阵

D = pdist( X , 'correlation')

结果:

C =

1.0000    0.4781

0.4781    1.0000

D =

0.5219

其中0.4781就是相关系数,0.5219是相关距离。

11. 信息熵(Information Entropy)

信息熵并不属于一种相似性度量。那为什么放在这篇文章中啊?这个。。。我也不知道。 (╯▽╰)

信息熵是衡量分布的混乱程度或分散程度的一种度量。分布越分散(或者说分布越平均),信息熵就越大。分布越有序(或者说分布越集中),信息熵就越小。

计算给定的样本集X的信息熵的公式:

参数的含义:

n:样本集X的分类数

pi:X中第i类元素出现的概率

信息熵越大表明样本集S分类越分散,信息熵越小则表明样本集X分类越集中。。当S中n个分类出现的概率一样大时(都是1/n),信息熵取最大值log2(n)。当X只有一个分类时,信息熵取最小值0


Ref: http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html

参考资料: 

[1]吴军. 数学之美 系列 12 - 余弦定理和新闻的分类.

http://www.google.com.hk/ggblog/googlechinablog/2006/07/12_4010.html

[2] Wikipedia. Jaccard index.

http://en.wikipedia.org/wiki/Jaccard_index

[3] Wikipedia. Hamming distance

http://en.wikipedia.org/wiki/Hamming_distance

[4] 求马氏距离(Mahalanobis distance )matlab版

http://junjun0595.blog.163.com/blog/static/969561420100633351210/

[5] Pearson product-moment correlation coefficient

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

机器学习中的相似性度量(Similarity Measurement)的更多相关文章

  1. 相似性度量(Similarity Measurement)与“距离”(Distance)

    在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关 ...

  2. 机器学习中常用的距离及其python实现

    1 概述 两个向量之间的距离(此时向量作为n维坐标系中的点)计算,在数学上称为向量的距离(Distance),也称为样本之间的相似性度量(Similarity Measurement).它反映为某类事 ...

  3. 机器学习中应用到的各种距离介绍(附上Matlab代码)

    转载于博客:各种距离 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的"距离"(Distance). ...

  4. ML 07、机器学习中的距离度量

    机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...

  5. 机器学习中的隐马尔科夫模型(HMM)详解

    机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...

  6. paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择

    机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...

  7. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  8. 机器学习中的范数规则化之(一)L0、L1与L2范数

    L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本 ...

  9. paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

    周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门 ...

随机推荐

  1. SQL Server 2008 R2——使用FULL OUTER JOIN实现多表信息汇总

    =================================版权声明================================= 版权声明:原创文章 谢绝转载  请通过右侧公告中的“联系邮 ...

  2. php应用jquery做ajax操作

    以下是全部代码: <html> <head> <title>jQuery Ajax 实例演示</title> </head> <scr ...

  3. WPF 自定义CheckBox

    WPF中原始的CheckBox样式很简单,有时候不适用于WPF那种炫酷的界面. 本章节讲述如何设计一个匹配业务需要.好看的CheckBox(继上篇<WPF-自定义ListBox>中的Che ...

  4. 如何正确的使用jquery-ajax

    什么是ajax ajax全称Asynchronous Javascript And XML,就是异步javascript和xml ajax的作用 ajax通常用于异步加载网页内容,以及局部更新. 实际 ...

  5. ElasticSearch集群设置

    多台机器 \config\elasticsearch.yml 文件修改 cluster.name设置统一的集群名如 cluster.name: win-es-001 node.name 设置当前Nod ...

  6. VMware下CentOS6.8配置GFS文件系统

    1.GFS介绍 GFS简要说明,它有两种: 1. Google文件系统:GFS是GOOGLE实现的是一个可扩展的分布式文件系统,用于大型的.分布式的.对大量数据进行访问的应用.它运行于廉价的普通硬件上 ...

  7. HTTP状态码302、303和307的故事

        今日读书,无法理解HTTP302.303.307状态码的来龙去脉,决定对其做深究并总结于本文.       <HTTP权威指南>第3章在讲解30X状态码时,完全没有讲清楚为什么要有 ...

  8. 关于selenium的CI、框架……

    这段时间除了项目测试外,主要在做web自动化的事情,大致总结一下吧,总体的设计模式pageobject+pagefactory+testng的数据驱动,项目用maven来构建,使用jenkins集成, ...

  9. NOIP2001 一元三次方程求解[导数+牛顿迭代法]

    题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...

  10. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...