BZOJ3036

给定一张有向无环图,起点为1,终点为N,每个点i有ki条出边,从每个点走其中一条出边的概率是1/ki,求从1到N的期望步数

我们注意到一点,走每条边都是等概率的,那么就相当于

给定一个DAG,随机走,求起点到终点的路径长度期望

那么只需要知道经过每一条边的期望次数,乘以边权之后再求和就是答案了

问题就转化成了,求经过每一条边的期望次数的问题

经过这条边的期望次数就是经过这条边起点的期望次数除以这条边起点的出度

那么只需要求经过每一个点的期望次数

就好了

 #include<cstdio>
const int maxn=;
const int maxm=;
int n,m,cnt;
bool vis[maxn];
int g[maxn],out[maxn];
double f[maxn];
struct Edge
{
int t,next,v;
}e[maxm];
void insert(int u,int v,int w)
{
cnt++;e[cnt].t=v;e[cnt].next=g[u];g[u]=cnt;e[cnt].v=w;
}
long long read()
{
long long x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void dfs(int x)
{
if(!vis[x]) vis[x]=;
else return;
for(int tmp=g[x];tmp;tmp=e[tmp].next)
{
dfs(e[tmp].t);
f[x]+=e[tmp].v+f[e[tmp].t];
}
if(out[x]) f[x]/=out[x];
}
int main()
{
int u,v,w;
n=read();m=read();
for(int i=;i<=m;i++)
{
u=read();v=read();w=read();
insert(u,v,w);
out[u]++; //出度统计
}
dfs();
printf("%.2lf",f[]);
return ;
}

代码风格清新脱俗

数学&动态规划:期望DP的更多相关文章

  1. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

  2. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  3. 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP

    [BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...

  4. BZOJ 1426: 收集邮票 数学期望 + DP

    Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...

  5. 概率及期望DP小结

    资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...

  6. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

  7. 高斯消元与期望DP

    高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...

  8. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  9. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  10. POJ 2096 找bug 期望dp

    题目大意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcompon ...

随机推荐

  1. 王者荣耀交流协会scrum立会20171111

    1.立会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:高远博 2.时间跨度: 2017年11月10日 18:00 - 18:33 ,总计33分钟. 3.地 点: 一 ...

  2. Beta冲刺贡献分数分配结果

    小组名称:Hello World! 项目名称:空天猎 组长:陈建宇 成员:刘成志.刘耀泽.刘淑霞.黄泽宇.方铭.贾男男 第三周贡献分分配结果 基础分 会议分 个人贡献分 最终分数 黄泽宇 9 0.5 ...

  3. Unicode和UTF-8

    作者:于洋链接:https://www.zhihu.com/question/23374078/answer/69732605来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出 ...

  4. Java微笔记(8)

    Java 中的包装类 Java 为每个基本数据类型都提供了一个包装类,这样就可以像操作对象那样来操作基本数据类型 基本类型和包装类之间的对应关系: 包装类主要提供了两大类方法: 将本类型和其他基本类型 ...

  5. HDU 5273 Dylans loves sequence 暴力递推

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5273 bc:http://bestcoder.hdu.edu.cn/contests/con ...

  6. Ubuntu系统升级内核方法

    一.查看内核版本 $ uname-sr //查看内核版本 二.去Ubuntu网站http://kernel.ubuntu.com/~kernel-ppa/mainline/下载所需版本的deb文件 w ...

  7. Java throw try catch

    public class Runtest { public static void main(String[] args) { // TODO Auto-generated method stub T ...

  8. css3 伪元素 ::before ::after

    键代码分析: /*css代码*/ .effect::before, .effect::after{ content:""; position:absolute; z-index:- ...

  9. linux之JDK安装

    1.JDK安装 a.卸载JDK (1)卸载默认的JDK 用root用户登陆到系统,打开一个终端输入 # rpm -qa|grep gcj 显示内容其中包含下面两行信息 # java-1.4.2-gcj ...

  10. javascript之彻底理解闭包

    闭包是函数和声明该函数的词法环境的组合. function init() { var name = "Mozilla"; // name 是一个被 init 创建的局部变量 fun ...