Tensorflow监控指标可视化

参考文献

强烈推荐Tensorflow实战Google深度学习框架

实验平台:

Tensorflow1.4.0

python3.5.0

MNIST数据集将四个文件下载后放到当前目录下的MNIST_data文件夹下

  • Tensorflow命名空间与计算图可视化介绍了通过TensorBoard的GRAPHS可视化TensorFlow计算图的结构以及在计算图上的信息。TensorBoard 除了可以可视化TensorFlow 的计算图,还可以可视化TensorFlow 程序运行过程中各种有助于了解程序运行状态的监控指标。在本节中将介绍如何利用TensorBoard 中其他栏目可视化这些监控指标。除了GRAPHS以外,TensorBoard界面中还提供了SCALARS(标量),IMAGESAUDIO(图片),DISTRIBUTIONS(统计分布)HISTOGRAMS(直方图统计分布)和TEXT(文本)六个界面来可视化其他的监控指标。以下程序展示了如何将TensorFlow程序运行时的信息输出到TensorBoard 日志文件中。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import tqdm # #### 1. 生成变量监控信息并定义生成监控信息日志的操作。 SUMMARY_DIR = "log_1"
BATCH_SIZE = 100
TRAIN_STEPS = 3000 # var给出了需要记录的张量,name给出了在可视化结果中显示的图表名称,这个名称一般和变量名一致
def variable_summaries(var, name):
# 将生成监控信息的操作放在同一个命名空间下
with tf.name_scope('summaries'):
# 通过tf.histogram_summary函数记录张量中元素的取值分布
# tf.summary.histogram函数会生成一个Summary protocol buffer.
# 将Summary 写入TensorBoard 门志文件后,在HISTOGRAMS 栏,和
# DISTRIBUTION 栏下都会出现对应名称的图表。和TensorFlow 中其他操作类似,
# tf.summary.histogram 函数不会立刻被执行,只有当sess.run 函数明确调用这个操作时, TensorFlow
# 才会具正生成并输出Summary protocol buffer. tf.summary.histogram(name, var) # 计算变量的平均值,并定义生成平均值信息日志的操作,记录变量平均值信息的日志标签名
# 为'mean/'+name,其中mean为命名空间,/是命名空间的分隔符
# 在相同命名空间中的监控指标会被整合到同一栏中,name则给出了当前监控指标属于哪一个变量 mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean) # 计算变量的标准差,并定义生成其日志文件的操作
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev/' + name, stddev) # #### 2. 生成一层全链接的神经网络。
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
# 将同一层神经网络放在一个统一的命名空间下
with tf.name_scope(layer_name):
# 声明神经网络边上的权值,并调用权重监控信息日志的函数
with tf.name_scope('weights'):
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name + '/weights') # 声明神经网络边上的偏置,并调用偏置监控信息日志的函数
with tf.name_scope('biases'):
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
# 记录神经网络节点输出在经过激活函数之前的分布
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation') # 记录神经网络节点输出在经过激活函数之后的分布。 """
对于layerl ,因为使用了ReLU函数作为激活函数,所以所有小于0的值部被设为了0。于是在激活后
的layerl/activations 图上所有的值都是大于0的。而对于layer2 ,因为没有使用激活函数,
所以layer2/activations 和layer2/pre_activations 一样。
"""
tf.summary.histogram(layer_name + '/activations', activations)
return activations def main():
mnist = input_data.read_data_sets("./datasets/MNIST_data", one_hot=True) with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
# 将输入变量还原成图片的像素矩阵,并通过tf.iamge_summary函数定义将当前的图片信息写入日志的操作 hidden1 = nn_layer(x, 784, 500, 'layer1')
y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity) # 计算交叉熵并定义生成交叉熵监控日志的操作。
with tf.name_scope('cross_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) """
计算模型在当前给定数据上的正确率,并定义生成正确率监控日志的操作。如果在sess.run()
时给定的数据是训练batch,那么得到的正确率就是在这个训练batch上的正确率;如果
给定的数据为验证或者测试数据,那么得到的正确率就是在当前模型在验证或者测试数据上
的正确率。
"""
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy) # tf.scalar_summary,tf.histogram_summary,tf.image_summary函数都不会立即执行,需要通过sess.run来调用这些函数
# 因为程序重定义的写日志的操作非常多,一一调用非常麻烦,所以Tensorflow提供了tf.merge_all_summaries函数来整理所有的日志生成操作。
# 在Tensorflow程序执行的过程中只需要运行这个操作就可以将代码中定义的所有日志生成操作全部执行一次,从而将所有日志文件写入文件。 merged = tf.summary.merge_all() with tf.Session() as sess:
# 初始化写日志的writer,并将当前的Tensorflow计算图写入日志
summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
tf.global_variables_initializer().run() for i in tqdm.tqdm(range(TRAIN_STEPS)):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
# 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。
summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys})
# 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的
# 运行信息。
summary_writer.add_summary(summary, i) summary_writer.close() if __name__ == '__main__':
main()

TensorFlow日志生成函数与Tensorboard界面栏对应关系

按命名空间分类的监控指标

Tensorboard教程:监控指标可视化的更多相关文章

  1. 吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生 ...

  2. Spring Boot 2.x监控数据可视化(Actuator + Prometheus + Grafana手把手)

    TIPS 本文基于Spring Boot 2.1.4,理论支持Spring Boot 2.x所有版本 众所周知,Spring Boot有个子项目Spring Boot Actuator,它为应用提供了 ...

  3. 【转载】apache kafka系列之-监控指标

    原文地址:http://blog.csdn.net/lizhitao/article/details/24581907 1.监控目标 1.当系统可能或处于亚健康状态时及时提醒,预防故障发生 2.报警提 ...

  4. apache kafka系列之-监控指标

    apache kafka中国社区QQ群:162272557 1.监控目标 1.当系统可能或处于亚健康状态时及时提醒,预防故障发生 2.报警提示 a.短信方式 b.邮件 2.监控内容 2.1 机器监控 ...

  5. Linux CPU监控指标

    Linux CPU监控指标 Linux提供了非常丰富的命令可以进行CPU相关数据进行监控,例如:top.vmstat等命令.top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执 ...

  6. 关于kafka生产者相关监控指标的理解(未解决)

    关于生产者相关的监控指标含义的理解,希望大神帮忙进行确定下.     这边找了官网,看了网上各样的资料,但都无法帮我理解监控项目相关含义.     相关的监控项目是从jconsole获取的,并接入到了 ...

  7. Hadoop记录- zookeeper 监控指标

    目前zookeeper获取监控指标已知的有两种方式: 1.通过zookeeper自带的 four letter words command 获取各种各样的监控指标 2.通过JMX Client连接zo ...

  8. 【MySQL】常用监控指标及监控方法

    对之前生产中使用过的MySQL数据库监控指标做个小结.  指标分类 指标名称 指标说明 性能类指标 QPS 数据库每秒处理的请求数量 TPS 数据库每秒处理的事务数量 并发数 数据库实例当前并行处理的 ...

  9. Hadoop记录-Hadoop集群重要监控指标

    通用监控指标 对于每个RPC服务应该监控 RpcProcessingTimeAvgTime(PRC处理的平均时间) 通常hdfs在异常任务突发大量访问时,这个参数会突然变得很大,导致其他用户访问hdf ...

随机推荐

  1. Python if后直接跟数字或字符串

    (1)如果if后面的条件是数字,只要这个数字不是0,python都会把它当做True处理,见下面的例子 if 15: print 'YES' 输出YES,但是如果数字是0,就会被认为是False. ( ...

  2. 【线段树维护复杂状态】Ryuji doesn't want to study

    https://nanti.jisuanke.com/t/31460 tree[rt].ans = tree[rt << 1].ans + tree[rt << 1 | 1]. ...

  3. IT小小鸟读后感言

    有感 读了我是一只IT小小鸟之后, 我发现上大学得靠自己自学,确定自己的目标和方向,多去参与实验和自己多锻炼编写程序.我现在大一,还有很多时间来让自己变得更好,虽然要补考两门课程,但是还是不要失去信心 ...

  4. this & super

    /* 当本类的成员和局部变量同名用this区分. 当子父类中的成员变量同名用super区分父类.   this和super的用法很相似.   this:代表一个本类对象的引用. super:代表一个父 ...

  5. Swift-属性监听

    监听属性的改变(开发中使用很多) oc中长是重写set方法 swift通过属性监听器 class Dog: NSObject { var name:String?{ // 属性监听器 // 属性即将改 ...

  6. Spark Transformations介绍

    背景 本文介绍是基于Spark 1.3源码 如何创建RDD? RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来. 举例:从普通数组创建RDD,里面包含了1到9这9个数字,它们 ...

  7. inotify 工具 是一种强大的、细粒度的、异步文件系统监控机制

    前言:Inotify是一种强大的.细粒度的.异步文件系统监控机制,它满足各种各样的文件监控需要,可以监控文件系统的访问属性.读写属性.权限属性.删除创建.移动等操作,也就是可以监控文件发生的一切变化. ...

  8. Struts2(五)

    以下内容是基于导入struts2-2.3.32.jar包来讲的 1.文件上传 A.单文件上传 <body> <form action="${pageContext.requ ...

  9. 解决Max retries exceeded with url的问题

    requests.exceptions.ConnectionError: HTTPSConnectionPool(host='itunes.apple.com', port=443): Max ret ...

  10. Kettle 使用Json输入

    import java.math.BigDecimal; private static final String JD="jd"; private static final Str ...