前面我们已经对多线程的基础知识有了一定的了解,那么接下来我们将要对多线程进一步深入的学习;但在学习之前我们还是要对传统的技术进行一次回顾,本章我们回顾的则是:传统线程技术和传统的定时器实现.

一、传统线程技术

1.创建方式

1、继承thread类

Thread t = new Thread(){
@Override
public void run() {
}
};
t.start();

2、实现Runnable接口

Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
while (true) {
}
}
});
t1.start();

3、实现Callable接口

ExecutorService pool = Executors.newCachedThreadPool();
Future future = pool.submit(new Callable() {
public Object call() throws Exception {
return null;
}
});

2.比较

1、Thread VS Runnable

  • java不支持多继承,允许实现多个接口。Thread是类,Runnable是接口
  • Runnable适合于资源的共享(多个Thread使用相同的Runnable)
  • public class Thread extends Object implements Runnable. Thread是Runnable接口的子类

2、Runnable VS Callable

  • Callable的 call() 方法可以返回Future类型结果和抛出异常,而Runnable的run()方法没有这些功能
  • Callable通常利用ExecutorService的submit方法去启动call方法,Runnable还可以通过Thread的run方法启动run方法

二、传统定时器Timer

1、创建

到点执行,参数(TimerTask task, Date time),或者(TimerTask task, long delay)延迟多久后执行

new Timer().schedule(new TimerTask() {
@Override
public void run() {
}
}, new Date());

延迟多久执行,然后定时执行,参数(TimerTask task, long delay, long period)或者(TimerTask task, Date firstTime, long period)到点执行,然后定时执行

new Timer().schedule(new TimerTask() {
@Override
public void run() {
}, 1000, 5000})

还有类似的scheduleAtFixedRate(TimerTask task, long delay, long period)scheduleAtFixedRate(TimerTask task, Date firstTime,long period)

2、schedule和scheduleAtFixedRate区别

  • 2个参数的schedule:如果当前时间超过第一次执行时间,则立即执行,否则到定时时间执行
  • 3个参数的schedule:如果当前时间超过第一次执行时间,则立即执行,否则到定时时间执行。下一个任务执行一定是在上一个任务执行完之后执行。下一次任务执行的时间需要看上一个任务执行多久exceTime及周期时间period,如果exceTime>period则立即执行,否则等待period时间再执行。
  • scheduleAtFixedRate:每个任务执行的时间应该是定下了的。如果中间有作业处理时间太长导致后面的不能如期定时执行,则会立即执行后面的作业,直到追上了某一个任务的定时。如果当前时间超过第一次执行时间,则后面所有的作业都会立即执行,直到追上了某一个任务的定时。因为fixed-rate,可能导致同一时间重复执行,所以TimerTask中的执行体需要考虑同步(不是很懂)

schedule示例:

new Timer().schedule(new TimerTask(){
public void run() {
try {
System.out.println("execute task! "+ dateFormatter.format(this.scheduledExecutionTime()));
Random random = new Random();
int slpTime = random.nextInt(3)*1000 + 4000;
System.out.println("exec time:" + slpTime);
Thread.sleep(slpTime);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},startDate, 5 * 1000);

输出结果:

execute task!  2017-12-14 23:26:22 // 当前时间超过了设定了首次执行时间,立即执行
exec time:1000 // 第一次执行时间为1s小于周期时间2s
execute task! 2017-12-14 23:26:24 // 所以第二次在第一次执行时间2s之后执行
exec time:2000 // 第三次次执行时间为2s刚好等于周期时间2s
execute task! 2017-12-14 23:26:26 // 所以第三次在第二次执行时间2s之后执行
exec time:3000 // 第三次执行时间为3s大于周期时间2s
execute task! 2017-12-14 23:26:29 // 所以第四次在第三次执行时间3s之后执行
exec time:1000 // 之后就类似
execute task! 2017-12-14 23:26:31
exec time:2000
execute task! 2017-12-14 23:26:33
exec time:3000
execute task! 2017-12-14 23:26:36
exec time:1000
execute task! 2017-12-14 23:26:38

scheduleAtFixedRate示例:

System.out.println("start time: " + dateFormatter.format(new Date()));
new Timer().scheduleAtFixedRate(new TimerTask(){
int i = 0;
int slpTimes[] = new int[] {2000,4000,100,100,100};
public void run() {
try {
System.out.println("execute task:" + i + "! "+ dateFormatter.format(this.scheduledExecutionTime()) + " now time: " + dateFormatter.format(new Date())) ;
int slpTime = slpTimes[i++%slpTimes.length];
System.out.println("exec time:" + slpTime);
Thread.sleep(slpTime);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},startDate, 2 * 1000);

输出结果:

start time: 2017-12-15 00:00:09                                     //开始执行时间未到定时
execute task:0! 2017-12-15 00:01:00 now time: 2017-12-15 00:01:00 //定时开始执行
exec time:2000 //刚好执行2s
execute task:1! 2017-12-15 00:01:02 now time: 2017-12-15 00:01:02 //所以第二次在规定时间执行
exec time:4000 //第二次执行2s,导致第三次延迟执行(第三次应该在2017-12-15 00:01:04执行)
execute task:2! 2017-12-15 00:01:04 now time: 2017-12-15 00:01:06 //第三次在2017-12-15 00:01:06执行
exec time:100 //第三次执行100ms
execute task:3! 2017-12-15 00:01:06 now time: 2017-12-15 00:01:06 //因为之前导致了延迟,需要追赶,所以立即执行,以下类似
exec time:100
execute task:4! 2017-12-15 00:01:08 now time: 2017-12-15 00:01:08
exec time:100
execute task:5! 2017-12-15 00:01:10 now time: 2017-12-15 00:01:10
exec time:2000
execute task:6! 2017-12-15 00:01:12 now time: 2017-12-15 00:01:12

3、Timer的缺陷

Timer的替代品ScheduledExecutorService,这个不在本文进行介绍,后面会进行阐述ScheduledExecutorService.

参考资料:

《多线程视频》张孝祥

JAVA多线程提高一:传统线程技术&传统定时器Timer的更多相关文章

  1. Java基础_死锁、线程组、定时器Timer

    一.死锁问题: 死锁是这样一种情形:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放.由于线程被无限期地阻塞,因此程序不可能正常终止. 比如,线程一需要第一把所,此时锁处于空闲状态,给了 ...

  2. JAVA多线程提高三:线程范围内共享变量&ThreadLocal

    今天我们学习的是如何在线程自己的范围内达到变量数据的共享,而各个线程之间又是互相独立开来,各自维护的,即我们说的ThreadLocal的作用. 一.概念 可以将每个线程用到的数据与对应的线程号存放到一 ...

  3. Java并发基础02. 传统线程技术中的定时器技术

    传统线程技术中有个定时器,定时器的类是Timer,我们使用定时器的目的就是给它安排任务,让它在指定的时间完成任务.所以先来看一下Timer类中的方法(主要看常用的TimerTask()方法): 前面两 ...

  4. Java多线程-同步:synchronized 和线程通信:生产者消费者模式

    大家伙周末愉快,小乐又来给大家献上技术大餐.上次是说到了Java多线程的创建和状态|乐字节,接下来,我们再来接着说Java多线程-同步:synchronized 和线程通信:生产者消费者模式. 一.同 ...

  5. Java多线程(二) —— 线程安全、线程同步、线程间通信(含面试题集)

    一.线程安全 多个线程在执行同一段代码的时候,每次的执行结果和单线程执行的结果都是一样的,不存在执行结果的二义性,就可以称作是线程安全的. 讲到线程安全问题,其实是指多线程环境下对共享资源的访问可能会 ...

  6. Java多线程(一) —— 线程的状态详解

    一.多线程概述  1. 进程 是一个正在执行的程序.是程序在计算机上的一次运行活动. 每一个进程执行都有一个执行顺序.该顺序是一个执行路径,或者叫一个控制单元. 系统以进程为基本单位进行系统资源的调度 ...

  7. Java多线程(五)线程的生命周期

    点我跳过黑哥的卑鄙广告行为,进入正文. Java多线程系列更新中~ 正式篇: Java多线程(一) 什么是线程 Java多线程(二)关于多线程的CPU密集型和IO密集型这件事 Java多线程(三)如何 ...

  8. Java多线程(一) —— 传统线程技术

    一.传统线程机制 1. 使用类Thread实现 new Thread(){ @Override public void run() { while(true){ try{ Thread.sleep(2 ...

  9. 【java并发】传统线程技术中创建线程的两种方式

    传统的线程技术中有两种创建线程的方式:一是继承Thread类,并重写run()方法:二是实现Runnable接口,覆盖接口中的run()方法,并把Runnable接口的实现扔给Thread.这两种方式 ...

随机推荐

  1. OpenFlow协议

    功能 1.0版本Openflow:控制器通过Openflow协议与交换机建立了安全通道(Sceure Channel),下发流表. 1.3版本Openflow:多控制器,多流表. 用于实现Contro ...

  2. spring mvc4 找不到静态文件js/css/html 404

    说明: http://localhost:8080 指向的目录是WEB-INF所在的目录,也就是说请求静态资源时都是从该根目录开始查找.建议将所有静态文件放到和WEB-INF同级的目录下. 以 htt ...

  3. QP(Quote-Printable) 编码

    QP(Quote-Printable)   方法,通常缩写为“Q”方法,其原理是把一个 8   bit   的字符用两个16进制数值表示,然后在前面加“=”.所以我们看到经过QP编码 后的文件通常是这 ...

  4. PHP中与类有关的运算符

    与类有关的运算符: new, instanceof:判断一个“变量”(对象,数据),是否是某个类的“实例”: 示意如下: class  A {} class  B {} class  C extend ...

  5. angularjs 指令间相互调用

    <div ng-app="app"> <div ng-controller="myctl"> <button superman s ...

  6. 【EF】Entity Framework实现属性映射约定

    Entity Framework Code First属性映射约定中“约定”一词,在原文版中为“Convention”,翻译成约定或许有些不好理解,这也是网上比较大多数的翻译,我们就当这是Entity ...

  7. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

  8. [二十一]SpringBoot 之 导入xml配置

    SpringBoot理念就是零配置编程,但是如果绝对需要使用XML的配置,我们建议您仍旧从一个@Configuration类开始,你可以使用@ImportResouce注解加载XML配置文件,我拿一个 ...

  9. MySQL二进制安装部署

    #使用二进制包安装mysql -linux-glibc2.-x86_64.tar.gz /data/ -linux-glibc2.-x86_64.tar.gz -C /data/ -linux-gli ...

  10. pycharm中新建并且运行django

    1.对于Bottle框架其本身未实现类似于Tornado自己基于socket实现Web服务,所以必须依赖WSGI,默认Bottle已经实现并且支持的WSGI有: 帮助我们写socket的server. ...