http://www.lydsy.com/JudgeOnline/problem.php?id=1064

表示想到某一种情况就不敢写下去了。。。。

就是找环的gcd。。。好可怕。。

于是膜拜了题解。。

和我想的差不多。。

首先发现这3种情况:

1、单链或者几条单链任意两条只相交于连续的一段的单链块。则最大的答案是$\sum |单链| + \sum |单链块种最长的链|$,最小答案是3。

2、环。环的长度是最大答案的倍数,因此我们取gcd,也可以看做是标号差(第一次访问和第二次访问的标号差)。

3、单链相交于至少两个不同的连续的一段。他们标号差(第一次访问和第二次访问的标号差)是最大答案的倍数。

最大答案为所有情况的最大答案的gcd。最小答案如果只有第1种情况,则为3,否则为最大答案的>=3的最小因数。

如果我们直接做的话很麻烦,可是怎么算情况2和情况3呢?

解决方法非常巧妙!http://hi.baidu.com/lydrainbowcat/item/f3fdc53164770bd76d15e980

这是有向图,我们把它变成无向图,那么不就可以从任意一个点开始都能得到整个环大小和情况3的标号差了吗..

这样一条边权值为1,反向边则权值为-1.

这样情况二和情况三就是标号差的gcd。

而情况1就能在上述方法处理情况2的时候找出最长链的长度即可,即标号max{num}-min{num}+1

最后答案分类讨论一下。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=100015;
int ihead[N], cnt, m, n, num[N], q[N], vis[N], cir, sum, ans;
struct dat { int next, to, w; }e[N*10*2];
void add(int u, int v, int w) { e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w; }
inline const int gcd(const int &a, const int &b) { return b?gcd(b, a%b):a; } int main() {
read(n); read(m);
for1(i, 1, m) { int u=getint(), v=getint(); add(u, v, 1); add(v, u, -1); }
for1(k, 1, n) if(!vis[k]) {
int front=0, tail=0;
q[tail++]=k;
int mx=0, mn=0;
while(front!=tail) {
int x=q[front++]; if(front==N) front=0;
mx=max(mx, num[x]);
mn=min(mn, num[x]);
for(int i=ihead[x]; i; i=e[i].next) {
int y=e[i].to;
if(vis[y]) cir=gcd(cir, abs(num[x]+e[i].w-num[y])), mx=max(mx, num[y]);
else {
q[tail++]=y; if(tail==N) tail=0;
num[y]=num[x]+e[i].w;
vis[y]=1;
}
}
}
sum+=mx-mn+1;
}
if(cir && cir<3) return puts("-1 -1"), 0;
if(cir) { int i=3; while(cir%i) ++i; printf("%d %d\n", cir, i); return 0; }
if(sum<3) return puts("-1 -1"), 0;
printf("%d 3\n", sum);
return 0;
}

  


Description

一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。 参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。 栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具的编号。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。

Input

第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具的编号。相同的数对a, b 在输入文件中可能出现多次。

Output

包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。

Sample Input

【输入样例一】

6 5
1 2
2 3
3 4
4 1
3 5

【输入样例二】

3 3
1 2
2 1
2 3

Sample Output

【输出样例一】
4 4

【输出样例二】
-1 -1

HINT

100%的数据,满足n ≤ 100000, m ≤ 1000000。

Source

【BZOJ】1064: [Noi2008]假面舞会(判环+gcd+特殊的技巧)的更多相关文章

  1. [bzoj 1064][NOI2008]假面舞会(dfs判断环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1064 分析: 如果a看到b,则a->b 那么: 1.如果图中有环,则说明这个环的 ...

  2. BZOJ 1064: [Noi2008]假面舞会(dfs + 图论好题!)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1064 题意: 思路: 考虑以下几种情况: ①无环并且是树: 无环的话就是树结构了,树结构的话想一下就 ...

  3. [BZOJ]1064: [Noi2008]假面舞会

    题目大意:n个人,k种假面,每人戴一种,戴第i种的可以看见第i+1种,戴第k种的可以看见第1种,给出m条关系表示一个人可以看到另一个人,问k可能的最大值和最小值.(n<=100,000,m< ...

  4. bzoj 1064 noi2008 假面舞会题解

    莫名其妙的变成了我们的noip互测题... 其实这题思想还是比较简单的,只是分类不好分而已 其实就是一个dfs的事 首先,非常明显,原题目中的所有关系可以抽象成一个图(这是...显而易见的吧...) ...

  5. 1064: [Noi2008]假面舞会 - BZOJ

    Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...

  6. [NOI2008]假面舞会 (搜索+gcd)

    题意 LuoguP1477 题解 对于每一条边(u,v)(u,v)(u,v),建两条边(u→v,1),(v→u,−1)(u\to v,1),(v\to u,-1)(u→v,1),(v→u,−1).跑b ...

  7. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  8. BZOJ 1064 假面舞会(NOI2008) DFS判环

    此题,回想Sunshinezff学长给我们出的模拟题,原题啊有木有!!此处吐槽Sunshinezff爷出题不人道!! 不过也感谢Sunshinezff学长的帮助,我才能做出来.. 1064: [Noi ...

  9. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

随机推荐

  1. Python 更新set

    更新set 由于set存储的是一组不重复的无序元素,因此,更新set主要做两件事: 一是把新的元素添加到set中,二是把已有元素从set中删除. 添加元素时,用set的add()方法: weekday ...

  2. STRUTS2配置动态页面

      STRUTS2配置动态页面 CreateTime--2017年5月11日09:00:31Author:Marydon 1.struts配置 <?xml version="1.0&q ...

  3. Zabbix Server和MPM(monitor for mysql)的高速部署

    1. 前言         zabbix作为开源免费的监控软件.其易于管理配置和可视化的视图.历史数据的定期维护.模板化的监控项目越来越受到广大IT运维人员的喜爱. 这里主要是总结了下Zabbix S ...

  4. memcahce 介绍以及安装以及扩展的安装

    简单介绍: memcache是一个高性能的分布式的内存对象缓存系统.通过在内存里维护一个巨大的hash表. 守护进程名: memcached 端口号: 单进程 依赖 libevent 安装memcac ...

  5. CallableStatement简单使用

    直接上存储过程.函数 --运行不带參数但带返回值的存储过程 CREATE OR REPLACE PROCEDURE proc_getUserCount(v_totalCount OUT NUMBER) ...

  6. Android API之onLayout, onMeasure

    android.view.ViewGroup protected void onLayout(boolean changed, int l, int t, int r, int b) 执行layout ...

  7. Android权限注解

    Android应用程序在使用很多功能的时候必须在Mainifest.xml中声明所需的权限,否则无法运行.下面是一个Mainifest.xml文件的例子: <?xml version=" ...

  8. Docker的安装使用-第1章

    Docker的安装 1.1 环境说明 操作系统: Red Hat Enterprise Linux Server release 7.1 软件环境: 系统已经配置了yum安装源 软件版本: docke ...

  9. 字符编解码的故事(ASCII,GBK,Unicode,Utf-8区别)

    很久很久以前,有一群人,他们决定用8个可以开合的晶体管来组合成不同的状态,以表示世界上的万物.他们认为8个开关状态作为原子单位很好,于是他们把这称为"字节". 再后来,他们又做了一 ...

  10. 使用xftp连接VirtualBox中的centos6.5

    首先要在windows上安装xftp软件,这个是傻瓜式操作就不说了 安装完毕之后,在centos上查看是否装了xftpd服务. [root@centos Desktop]# rpm -qa | gre ...