CodeForces 327E Axis Walking(状压DP+卡常技巧)
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.
Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1, b2 = ap2and so on. The array b is called a "route". There are n! different routes, one for each permutation p.
Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.
Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those knumbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007 (109 + 7).
Input
The first line contains an integer n (1 ≤ n ≤ 24). The following line contains nintegers: a1, a2, ..., an (1 ≤ ai ≤ 109).
The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.
题意:给出n个数,给出至多两个数k1,k2,求这n个数每个排列中前缀和不含k1/k2的排列个数
题解:首先看着范围考虑状压dp
dp[sta]=sigma(dp[sta^1<<i]) i为sta中所有1的位置
sum[sta]==k1||sum[sta]==k2 dp[sta]=0;
然后显然直接模会非常慢, 所以用-mod代替模
代码如下:
#pragma GCC optimize(3)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 1000000007
using namespace std; long long n,dp[<<],sum[<<],kkk[],k; inline int lowbit(int x)
{
return x&-x;
} int main()
{
scanf("%lld",&n);
int tmp;
for(int i=;i<n;i++)
{
scanf("%d",&tmp);
sum[<<i]=tmp;
}
scanf("%lld",&k);
for(int i=;i<k;i++)
{
scanf("%lld",&kkk[i]);
}
dp[]=;
for(int i=;i<(<<n);i++)
{
sum[i]=sum[i^lowbit(i)]+sum[lowbit(i)];
if(sum[i]==kkk[]||sum[i]==kkk[])
{
continue;
}
for(int j=i;j;j-=lowbit(j))
{
dp[i]=dp[i]+dp[i^lowbit(j)];
if(dp[i]>=mod) dp[i]-=mod;
}
}
printf("%lld\n",dp[(<<n)-]);
}
CodeForces 327E Axis Walking(状压DP+卡常技巧)的更多相关文章
- Codeforces 327E Axis Walking 状压dp
这题真的有2500分吗... 难以置信... #include<bits/stdc++.h> #define LL long long #define fi first #define s ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces 917C - Pollywog(状压 dp+矩阵优化)
UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...
- Codeforces 79D - Password(状压 dp+差分转化)
Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...
- Codeforces 544E Remembering Strings 状压dp
题目链接 题意: 给定n个长度均为m的字符串 以下n行给出字符串 以下n*m的矩阵表示把相应的字母改动成其它字母的花费. 问: 对于一个字符串,若它是easy to remembering 当 它存在 ...
- codeforces 21D. Traveling Graph 状压dp
题目链接 题目大意: 给一个无向图, n个点m条边, 每条边有权值, 问你从1出发, 每条边至少走一次, 最终回到点1. 所走的距离最短是多少. 如果这个图是一个欧拉回路, 即所有点的度数为偶数. 那 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
- Codeforces ----- Kefa and Dishes [状压dp]
题目传送门:580D 题目大意:给你n道菜以及每道菜一个权值,k个条件,即第y道菜在第x道后马上吃有z的附加值,求从中取m道菜的最大权值 看到这道题,我们会想到去枚举,但是很显然这是会超时的,再一看数 ...
- CodeForces 907E Party(bfs+状压DP)
Arseny likes to organize parties and invite people to it. However, not only friends come to his part ...
随机推荐
- OD 实验(十七) - 对一个程序的逆向分析
程序: 运行程序 弹出一个对话框,点击 OK 来到主界面,点击 Help -> Register Now 这是输入注册码的地方 按关闭程序的按钮 会提示剩下 30 天的使用时间 用 Ressco ...
- 移动app非功能测试点收集
非功能测试 移动app测试的另一重要方面是移动app的非功能需求.移动app在推出市场或进行进一步开发前,移动测试员有许多需要测试的问题. 早期开发阶段要进行的第一个测试应该是实用性测试.通常是由al ...
- python socket打造一个定位工具
前言: 刚刚学习socket,打算后期得学习 怎么写exploit. 原理: 其实很简单,客户端写个爬虫.然后将获取到的IP放入高德地图 在通过socket发送.利用ngrok达到能外网搞事. 准备: ...
- linux日志查询技巧
问题描述: 18803959896用户反馈,通讯录备份失败,提示“身份验证失败,请注销账号后重新登录”,不管用账号密码登录还是一键登录,都是提示这个.请协助查询.谢谢~ 备注:三星note3最新版本彩 ...
- shell基本语法和执行
执行脚本: 编写一个简单的脚本test.sh: #! /bin/sh cd .. ls Shell脚本中用#表示注释,相当于C语言的//注释.但如果#位于第一行开头,并且是#!(称为Shebang)则 ...
- REST 规范
DRF之REST规范介绍及View请求流程分析 DRF之解析器组件及序列化组件 DRF - 序列化组件(GET/PUT/DELETE接口设计).视图优化组件 DRF之权限认证频率组件 DRF之注册器响 ...
- Consul 简介、安装、常用命令的使用
1 Consul简介 Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置.与其他分布式服务注册与发现的方案,Consul的方案更"一站式" ...
- 将本地Jar包安装到maven仓库中去
开发中会遇到无法通过pom.xml下载jar包的情况,遇到这种情况我们可以手动在本地安装jar包到本地仓库中去,这样就可以下次再用到的话不用再次联网下载,具体以oracle的驱动包ojdbc6.jar ...
- js小功能
1 删除左右两端的空格 //删除左右两端的空格 function trim(str) { return str.replace(/(^\s*)|(\s*$)/g, ""); } 2 ...
- sqlserver里常用的语法
bb 为nvarchar(50)CAST(bb AS int) select MAX(CAST(bb AS int)) from AAA