Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.

Iahub has n positive integers a1a2, ..., an. The sum of those numbers is d. Suppose p1p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1b2 = ap2and so on. The array b is called a "route". There are n! different routes, one for each permutation p.

Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.

Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those knumbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (1 ≤ n ≤ 24). The following line contains nintegers: a1, a2, ..., an (1 ≤ ai ≤ 109).

The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.

题意:给出n个数,给出至多两个数k1,k2,求这n个数每个排列中前缀和不含k1/k2的排列个数

题解:首先看着范围考虑状压dp

dp[sta]=sigma(dp[sta^1<<i]) i为sta中所有1的位置

sum[sta]==k1||sum[sta]==k2 dp[sta]=0;

然后显然直接模会非常慢, 所以用-mod代替模

代码如下:

#pragma GCC optimize(3)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 1000000007
using namespace std; long long n,dp[<<],sum[<<],kkk[],k; inline int lowbit(int x)
{
return x&-x;
} int main()
{
scanf("%lld",&n);
int tmp;
for(int i=;i<n;i++)
{
scanf("%d",&tmp);
sum[<<i]=tmp;
}
scanf("%lld",&k);
for(int i=;i<k;i++)
{
scanf("%lld",&kkk[i]);
}
dp[]=;
for(int i=;i<(<<n);i++)
{
sum[i]=sum[i^lowbit(i)]+sum[lowbit(i)];
if(sum[i]==kkk[]||sum[i]==kkk[])
{
continue;
}
for(int j=i;j;j-=lowbit(j))
{
dp[i]=dp[i]+dp[i^lowbit(j)];
if(dp[i]>=mod) dp[i]-=mod;
}
}
printf("%lld\n",dp[(<<n)-]);
}

CodeForces 327E Axis Walking(状压DP+卡常技巧)的更多相关文章

  1. Codeforces 327E Axis Walking 状压dp

    这题真的有2500分吗... 难以置信... #include<bits/stdc++.h> #define LL long long #define fi first #define s ...

  2. codeforces Diagrams & Tableaux1 (状压DP)

    http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...

  3. Codeforces 917C - Pollywog(状压 dp+矩阵优化)

    UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...

  4. Codeforces 79D - Password(状压 dp+差分转化)

    Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...

  5. Codeforces 544E Remembering Strings 状压dp

    题目链接 题意: 给定n个长度均为m的字符串 以下n行给出字符串 以下n*m的矩阵表示把相应的字母改动成其它字母的花费. 问: 对于一个字符串,若它是easy to remembering 当 它存在 ...

  6. codeforces 21D. Traveling Graph 状压dp

    题目链接 题目大意: 给一个无向图, n个点m条边, 每条边有权值, 问你从1出发, 每条边至少走一次, 最终回到点1. 所走的距离最短是多少. 如果这个图是一个欧拉回路, 即所有点的度数为偶数. 那 ...

  7. Codeforces 895C - Square Subsets 状压DP

    题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...

  8. Codeforces ----- Kefa and Dishes [状压dp]

    题目传送门:580D 题目大意:给你n道菜以及每道菜一个权值,k个条件,即第y道菜在第x道后马上吃有z的附加值,求从中取m道菜的最大权值 看到这道题,我们会想到去枚举,但是很显然这是会超时的,再一看数 ...

  9. CodeForces 907E Party(bfs+状压DP)

    Arseny likes to organize parties and invite people to it. However, not only friends come to his part ...

随机推荐

  1. 【转】C#父类与子类的静态成员变量、实例成员变量、构造函数的执行顺序

    原文地址:http://www.xuebuyuan.com/1092603.html Win7+VS2010测试的结果如下: ①子类静态成员变量②子类静态构造函数③子类实例成员变量④父类静态成员变量⑤ ...

  2. firefox 插件 取消认证签名

    Firebug Tab Mix plus :系统退出自动保存tab List.     tab mix options>Session>start/exit>when browse ...

  3. JBPM4.4学习笔记

    1.JBPM4表说明: JBPM4_DEPLOYMENT 流程定义表 JBPM4_DEPLOYPROP 流程定义属性表 JBPM4_EXECUTION 流程实例表 JBPM4_HIST_ACTINST ...

  4. java反射(Field的应用)

    //$Id: DirectPropertyAccessor.java 11405 2007-04-15 12:50:34Z max.andersen@jboss.com $ package org.h ...

  5. python安装库(Windows下)

    首先确保安装了pip,并且pip也加入了系统path路径: pip下载:https://pypi.python.org/pypi/pip#downloads 下载Python对应的包:(http:// ...

  6. System.Web.Mvc.Html 命名空间小计

    1,Html.Action    使用指定参数调用指定子操作方法并以 HTML 字符串形式返回结果. 1 <div id="HtmlAction"> 2 3 @Html ...

  7. mysql主从错误180301

    Fatal error: The slave I/O thread stops because master and slave have equal MySQL server ids; these ...

  8. 微信小程序相关二、css介绍,菜单制作,表单相关,京东注册页面

    一.第二天上午 1.1上午因为有其他的课所以没有去这个课,不过下午看复习的时候的概括,讲了DTD,语法特性,css选择器以及权重,还有一些简单的样式 1.2 DTD Docuement Type 声明 ...

  9. java-tip-关于StringBuilder的使用

    当我们需要拼接字符串时,通常会使用StringBuilder,这里简单分析下StringBuilder的内部结构. StringBuilder内部是一个char数组,当调用append方法连接字符串时 ...

  10. Linux Bash脚本编程语言中的美学与哲学

    我承认,我再一次地当了标题党.但是不可否认,这一定是一篇精华随笔.在这一篇中,我将探讨Bash脚本语言中的美学与哲学. 这不是一篇Bash脚本编程的教程,但是却能让人更加深入地了解Bash脚本编程,更 ...