UVa 11324 The Largest Clique (强连通分量+DP)
题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u。
析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩成一个点,然后该图就成了一个DAG,然后就可以直接用DP来做了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e15;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1000 + 50;
const LL mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn];
int dfs_cnt, scc_cnt;
stack<int> S; void dfs(int u){
pre[u] = lowlink[u] = ++dfs_cnt;
S.push(u);
for(int i = 0; i < G[u].sz; ++i){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v])
lowlink[u] = min(lowlink[u], pre[v]);
}
if(lowlink[u] == pre[u]){
++scc_cnt;
while(1){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc(int n){
dfs_cnt = scc_cnt = 0;
ms(pre, 0); ms(sccno, 0);
for(int i = 1; i <= n; ++i)
if(!pre[i]) dfs(i);
} vector<int> g[maxn];
int num[maxn]; int dp[maxn];
int ans;
bool vis[maxn]; void dfs1(int u){
dp[u] = 0;
for(int i = 0; i < g[u].sz; ++i){
int v = g[u][i];
dfs1(v);
dp[u] = max(dp[u], dp[v]);
}
dp[u] += num[u];
ans = max(ans, dp[u]);
} int main(){
int T; cin >> T;
while(T--){
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; ++i) G[i].cl, g[i].cl;
for(int i = 0; i < m; ++i){
int u, v;
scanf("%d %d", &u, &v);
G[u].pb(v);
}
find_scc(n); ms(num, 0);
ms(vis, 0);
for(int i = 1; i <= n; ++i) ++num[sccno[i]];
for(int i = 1; i <= n; ++i)
for(int j = 0; j < G[i].sz; ++j){
int v = G[i][j];
if(sccno[i] != sccno[v]){
g[sccno[i]].pb(sccno[v]);
vis[sccno[v]] = 1;
}
}
ans = 0;
for(int i = 1; i <= scc_cnt; ++i)
if(!vis[i]) dfs1(i);
printf("%d\n", ans);
}
return 0;
}
UVa 11324 The Largest Clique (强连通分量+DP)的更多相关文章
- UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)
题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
- UVA - 11324 The Largest Clique (强连通缩点+dp)
题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...
- UVA 11324 - The Largest Clique(强连通分量+缩点)
UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...
- UVA11324 The Largest Clique[强连通分量 缩点 DP]
UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...
- UVA 11324 The Largest Clique (强连通分量,dp)
给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...
- UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP
题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u ...
- uva 11324 The Largest Clique
vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...
随机推荐
- USB设备---URB请求块
1.urb 结构体 USB 请求块(USB request block,urb)是USB 设备驱动中用来描述与USB 设备通信所用的基本载体和核心数据结构,非常类似于网络设备驱动中的sk_buff 结 ...
- Java的Socket通信----通过 Socket 实现 TCP 编程之多线程demo(2)
JAVA Socket简介 所谓socket 通常也称作”套接字“,用于描述IP地址和端口,是一个通信链的句柄.应用程序通常通过”套接字”向网络发出请求或者应答网络请求. import java.io ...
- 使用product_user_profile来实现用户权限的设定
我们有时候在以普通用户登录SQL*Plus的时候,会碰到下面的错误提示: Error accessing PRODUCT_USER_PROFILE Warning: Product user prof ...
- form中input是类型有哪些?
text:文本框 password:密框码 radio:单选按钮 checkbox:复选框 file:文件选择域 hidden:隐藏域 button:按钮 reset:重置按钮 submit:表单提交 ...
- 第九章 消息总线: Spring Cloud Bus
在微服务架构的系统中, 我们通常会使用轻量级的消息代理来构建一个共用的消息主题让系统中所有微服务实例都连接上来, 由于该主题中产生的消息会被所有实例监听和消费, 所以我们称它为消息总线. 在总线上的各 ...
- 关于微信支付URL未注册其中的坑THINKPHP5
1 微信支付是区分大小写的 TP有的URL 会默认转换 http://ams.###.com/index/Pay/wechat/order_number/ 会被解析 http://ams.###.co ...
- 关于git的reset、checkout、revert
https://www.atlassian.com/git/tutorials/resetting-checking-out-and-reverting/file-level-operations 最 ...
- 爬虫的三种解析方式(正则解析, xpath解析, bs4解析)
一 : 正则解析 : 常用正则回顾: 单字符: . : 除换行符以外的所有字符 [] : [aoe] [a-w] 匹配集合中任意一个字符 \d : 数字 [0-9] \D : 非数字 \w : 非数字 ...
- PHP,JAVA,NET 开发比较
装载出处:http://www.cnblogs.com/sinlang5778/archive/2011/08/10/2133190.html 一.语言: PHP:PHP产生与1994年,其语法混合了 ...
- ARM汇编中值滤波实验
其实就是 汇编的排序然后选出中位数 排序写的是最直接的冒泡排序,因为简单. 相应的C代码 r2=r0; while(r1<r0){ r1++; r2=r2-; r3=; while(r3< ...