题目链接:

改造路

飞行路线

其实这两道题基本上是一样的,就是分层图的套路题。

为什么是分层图呢?首先,我们的选择次数比较少,可以把这几层的图建出来而不会爆空间。然后因为选择一个边权为0的路线之后我们就进入了下一个状态,最短路的计算就和不选择这个边权为0的路线完全独立了。

所以我们把每一层的图建出来,相邻图有边的话连0边,其他的按照原样连。dis数组存最短路。\(最后答案就是dis[n*k+end]\),end为终点。

所以所以。。。也没有什么可说的???

注意要写dij,以后图论的题能不写spfa就别写。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#define MAXM 4100000
#define MAXN 410000
using namespace std;
bool done[MAXN];
int n,m,edge_number,st,end,k;
int dis[MAXN],head[MAXN];
struct Edge{int nxt,to,dis;}edge[MAXM];
struct Node{
int u,d;
friend bool operator <(struct Node x,struct Node y)
{
return x.d>y.d;
}
};
void add(int from,int to,int dis)
{
edge[++edge_number].dis=dis;
edge[edge_number].to=to;
edge[edge_number].nxt=head[from];
head[from]=edge_number;
}
inline void dij()
{
priority_queue<Node>q;
memset(dis,0x3f,sizeof(dis));
q.push((Node){st,0});
dis[st]=0;
while(!q.empty())
{
int u=q.top().u;
q.pop();
if(done[u]) continue;
done[u]=1;
for(int i=head[u];i;i=edge[i].nxt)
{
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].dis)
{
dis[v]=dis[u]+edge[i].dis;
q.push((Node){v,dis[v]});
}
}
}
}
int main()
{ scanf("%d%d%d",&n,&m,&k);
st=1,end=n;
for(int i=1;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
for(int j=1;j<=k;j++)
{
add(u+(j-1)*n,v+j*n,0);
add(v+(j-1)*n,u+j*n,0);
add(u+j*n,v+j*n,w);
add(v+j*n,u+j*n,w);
}
}
for(int i=1;i<=k;i++)
add((i-1)*n+end,i*n+end,0);
dij();
printf("%d\n",dis[n*k+end]);
return 0;
}

[USACO09FEB] 改造路Revamping Trails | [JLOI2011] 飞行路线的更多相关文章

  1. P2939 [USACO09FEB]改造路Revamping Trails

    P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...

  2. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解

    P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...

  3. [USACO09FEB]改造路Revamping Trails 分层最短路 Dijkstra BZOJ 1579

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  4. Luogu 2939 [USACO09FEB]改造路Revamping Trails && Luogu 4568 [JLOI2011]飞行路线

    双倍经验 写这两题之前被大佬剧透了呜呜呜. 分层图+最短路. 因为有$k$次机会能够把路径的费用变为$0$,我们可以建$k + 1$层图,对于每一层图我们把原来的边权和双向边连到上面去,而对于层与层之 ...

  5. 洛谷P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰 ...

  6. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  7. [USACO09FEB]改造路Revamping Trails

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

  8. 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

  9. LUOGU P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

随机推荐

  1. Python Beautiful Soup 解析库的使用

    Beautiful Soup 借助网页的结构和属性等特性来解析网页,这样就可以省去复杂的正则表达式的编写. Beautiful Soup是Python的一个HTML或XML的解析库. 1.解析器 解析 ...

  2. Cloudstack4.2之改变数据卷容量的大小(Resize Data Volumes)

    下图标注了这个功能在cloudstack4.2 UI中的位置 在cloudstack中是通过磁盘服务来设定卷的大小的.管理员可以设置相应的磁盘服务以供用户来使用.为了增强系统的灵活性,方便最终用户的使 ...

  3. StringUtils详解

    public static void StringUtil(){ //null 和 ""操作~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //判断是否 ...

  4. 转载 MYSQL性能优化的最佳20+条经验

    转自:https://coolshell.cn/articles/1846.html 今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才 ...

  5. p2598 [ZJOI2009]狼和羊的故事

    传送门 分析 起点向狼连边,羊向终点连边,边权均为inf 每个点向它四联通的点连边权萎1的边 跑最小割即可 代码 #include<iostream> #include<cstdio ...

  6. zigbee初探

    什么是zigbee? 1.它是一种通信方式,一种通信协议: 2.其作用就是构建一个类似无线局域网的东西:如果这个局域网用于传感器的数据收集.监控,那么这个网络就叫做无线传感器网络. 应用领域:家居.工 ...

  7. HUST软工1505班第0周作业成绩公布

    说明 本次公布的成绩包含三次作业的结果: 毕博平台课前测试题 第0周作业1:开设博客 第0周作业2:博客阅读和思考 如果同学对作业结果存在异议,可以: 在线平台的第一周在线答疑中创建话题申诉. 或直接 ...

  8. 手动添加ceph的mds

    1.在需要安装的目标机器上创建mds目录 mkdir -p / 2.生成mds的keyring,并将其写入/var/lib/ceph/mds/ceph-0/keyring文件中 ceph auth g ...

  9. (4)WePHP 模板引入CSS js

    模板有两个定义了两个常量 父类已经定义好了 //模板常量 $dirStr=dirname($_SERVER['SCRIPT_NAME']); $dirStr=$dirStr=='\\'?NULL:$d ...

  10. static 和final

    1.static       static关键字可以用来修饰类的变量,方法和内部类.static是静态的意思,也是全局的意思,它定义的东西属于全局,与类相关,不与具体实例相关.就是说它调用的时候,只是 ...