赤池信息量准则[1]  是由日本统计学家赤池弘次创立的,以熵的概念基础确定。

赤池信息量准则,即Akaike information criterion、简称AIC,是衡量统计模型拟合优良性的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则建立在熵的概念基础上,可以权衡所估计模型的复杂度和此模型拟合数据的优良性。

公式:

在一般的情况下,AIC可以表示为:
AIC=(2k-2L)/n
 
参数越少,AIC值越小,模型越好
样本数越多,AIC值越小,模型越好
 这和调整的R方思路一致,即对变量多的模型加重惩罚力度
 
它的假设条件是模型的误差服从独立正态分布。
其中:k是所拟合模型中参数的数量,L是对数似然值,n是观测值数目。
AIC的大小取决于L和k。k取值越小,AIC越小;L取值越大,AIC值越小。k小意味着模型简洁,L大意味着模型精确。因此AIC和修正的决定系数类似,在评价模型是兼顾了简洁性和精确性。
具体到,L=-(n/2)*ln(2*pi)-(n/2)*ln(sse/n)-n/2.其中n为样本量,sse为残差平方和
表明增加自由参数的数目提高了拟合的优良性,AIC鼓励数据拟合的优良性但是尽量避免出现过度拟合(Overfitting)的情况。所以优先考虑的模型应是AIC值最小的那一个。赤池信息准则的方法是寻找可以最好地解释数据但包含最少自由参数的模型。
 

AICc和AICu

在样本小的情况下,AIC转变为AICc:
AICc=AIC+[2k(k+1)/(n-k-1)
当n增加时,AICc收敛成AIC。所以AICc可以应用在任何样本大小的情况下(Burnham and Anderson, 2004)。
McQuarrie 和 Tsai(1998: 22)把AICc定义为:
AICc=ln(RSS/n)+(n+k)/(n-k-2),
他们提出的另一个紧密相关指标为AICu:
AICu=ln[RSS/(n-k)]+(n+k)/(n-k-2).
 
 

QAIC

QAIC(Quasi-AIC)可以定义为:
QAIC=2k-1/c*2lnL
其中:c是方差膨胀因素。因此QAIC可以调整过度离散(或者缺乏拟合)。
在小样本情况下, QAIC表示为:
QAICc=QAIC+2k(2k+1)/(n-k-1)

赤池信息量准则 ( Akaike information criterion)的更多相关文章

  1. 赤池信息准则AIC,BIC

    很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但是以提高模型复杂度为代价的,同时带来一个机器学习中非常普遍的问题——过拟合.所以,模型选择问题在模型复杂度与模型 ...

  2. R Akaike information criterion,AIC,一个越小越好的指标

    Akaike information criterion,AIC是什么?一个用来筛选模型的指标.AIC越小模型越好,通常选择AIC最小的模型.第一句话好记,第二句话就呵呵了,小编有时候就会迷惑AIC越 ...

  3. (转)格拉布斯准则(Grubbs Criterion)处理数据异常

    格拉布斯准则:https://baike.baidu.com/item/%E6%A0%BC%E6%8B%89%E5%B8%83%E6%96%AF%E5%87%86%E5%88%99/3909586 G ...

  4. 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection

    在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题. 如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值 ...

  5. AIC与BIC

    首先看几个问题 1.实现参数的稀疏有什么好处? 一个好处是可以简化模型.避免过拟合.因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数作用,会引发过拟合.并且参数少了模型的解释能力会变强. 2 ...

  6. 一元回归1_基础(python代码实现)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  7. Python----多元线性回归

    多元线性回归 1.多元线性回归方程和简单线性回归方程类似,不同的是由于因变量个数的增加,求取参数的个数也相应增加,推导和求取过程也不一样.. y=β0+β1x1+β2x2+ ... +βpxp+ε 对 ...

  8. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  9. aic bic mdl

    https://blog.csdn.net/xianlingmao/article/details/7891277 https://blog.csdn.net/lfdanding/article/de ...

随机推荐

  1. 如何更改Arcmap里经纬度小数点后面的位数?

    customize>arcmap option>data view >round coordinate to 改成想要显示的小数位数

  2. mac react-native从零开始android真机测试

    1. 安装android相关jdk,(https://blog.csdn.net/vvv_110/article/details/72897142) 2. 手机和mac使用usb连接, 手机开发者设置 ...

  3. Python爬虫入门(3-4):Urllib库的高级用法

    1.分分钟扒一个网页下来 怎样扒网页呢?其实就是根据URL来获取它的网页信息,虽然我们在浏览器中看到的是一幅幅优美的画面,但是其实是由浏览器解释才呈现出来的,实质它 是一段HTML代码,加 JS.CS ...

  4. win10 redis安装教程

    下载解压,没什么好说的,在解压后的目录下有以下这些文件: 在 命令行 启动服务端 redis目录下执行: redis-server.exe redis.windows.conf 如果需要 开机启动:执 ...

  5. ionic 开发实例

    ionic 开发实例 一.ionic初始化项目 1:安装ionic npm install -g ionic 2:初始化项目框架 我们可以用命令创建一个应用程序,可以使用我们的一个现成的应用程序模板, ...

  6. redis 常用命令 结合php

    这篇文章主要介绍了30个php操作redis常用方法代码例子,本文其实不止30个方法,可以操作string类型.list类型和set类型的数据,需要的朋友可以参考下     redis的操作很多的,以 ...

  7. Java 学习笔记 ------第三章 基础语法

    本章学习目标: 认识类型与变量 学习运算符的基本使用 了解类型转换细节 运用基本流程语法 一.类型(基本类型) 所谓基本类型,就是在使用时,得考虑一下数据用多少内存长度存比较经济,利用程序语法告诉JV ...

  8. 第八,九周web制作代码

      <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or ...

  9. 浅析GCC下C++多重继承 & 虚拟继承的对象内存布局

    继承是C++作为OOD程序设计语言的三大特征(封装,继承,多态)之一,单一非多态继承是比较好理解的,本文主要讲解GCC环境下的多重继承和虚拟继承的对象内存布局. 一.多重继承 先看几个类的定义: 01 ...

  10. 软工alpha阶段个人总结

    一.个人总结 类别 具体技能和面试问题 现在的回答(大三下) 语言 最拿手的语言之一,代码量是多少? java,代码量在一万行左右 语言 最拿手的语言之二,代码量是多少? C语言,代码量在五千行左右 ...