BZOJ2431 HAOI2009 逆序对数列


Description

对于一个数列ai{a_i}ai​,如果有i<j且ai&gt;aja_i&gt;a_jai​>aj​,那么我们称aia_iai​与aja_jaj​为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input

4 1

Sample Output

3
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000


直接考虑DP
dpi,jdp_{i,j}dpi,j​表示i个数存在j个逆序对的方案数
考虑把第i个数放进排列,放在位置j会有i-j个逆序对产生
dpi,j=∑dp{i−1,k}​
然后可以用前缀和优化


 #include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fd(a,b,c) for(int a=b;a>=c;--a)
#define LL long long
#define Mod 10000
#define N 1010
int dp[N][N];
int n,k;
int add(int a,int b){return (a+b)%Mod;}
int sub(int a,int b){return (a-b+Mod)%Mod;}
int main(){
scanf("%d%d",&n,&k);
fu(i,,n)dp[i][]=;
fu(i,,n){
fu(j,,k)dp[i-][j]=add(dp[i-][j],dp[i-][j-]);
fu(j,,k){
dp[i][j]=dp[i-][j];
if(j>=i)dp[i][j]=sub(dp[i][j],dp[i-][j-i]);
}
}
printf("%d",dp[n][k]);
return ;
}

BZOJ2431 HAOI2009 逆序对数列 【DP】*的更多相关文章

  1. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  2. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  3. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

  4. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  5. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  6. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  7. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  8. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  9. bzoj2431: [HAOI2009]逆序对数列

    dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...

随机推荐

  1. Solr学习总结 Solr的安装与配置

    接着前一篇,这里总结下Solr的安装与配置 1.准备 1.安装Java8 和 Tomcat9 ,java和tomcat 的安装这里不再重复.需要注意的是这两个的版本兼容问题.貌似java8 不支持,t ...

  2. 对dataframe中某一列进行计数

    本来是一项很简单的任务...但很容易忘记搞混..所以还是记录一下 方法一: df['col'].value_counts() 方法二: groups = df.groupby('col') group ...

  3. Flash访问模块FDS用法及常见问题—nRF5 SDK模块系列一

    FDS,全称Flash Data Storage,用来访问芯片内部Flash的.当你需要把数据存储在Flash中,或者读取Flash中的用户数据,或者更新或者删除Flash中的数据,那么FDS模块是你 ...

  4. 【Python】解决Python脚本 在cmd命令行窗口运行时,中文乱码问题

    问题描述 python2.X,代码中指定了UTF-8,但是在cmd命令行窗口时,打印的中文仍然会乱码 在python3不存在该问题 运行结果: 原因 搜索得知,中文windows默认的输出编码为gbk ...

  5. unity3D用什么语言开发好?

    unity3D用什么语言开发好? 一.总结 一句话总结:选c# 同时U3D团队也会把支持的重心转移到C#,也就是说文档和示例以及社区支持的重心都在C#,C#的文档会是最完善的,C#的代码实例会是最详细 ...

  6. centos双机热备份

    centos双机热备份 本机没有用到F5硬件,用到的是radware. 现在有2台服务器:192.168.2.66, 192.168.2.67 有一个公网ip:xxx.xxx.xx.203 将67上冷 ...

  7. Pycharm-professional-2017.2.3破解安装

    初次接触Python,大神推荐使用PyCharm IDE工具,作为小白初生牛犊不怕虎,上手就来最新版的,这也许不是最好的选择,但在以后慢慢琢磨深入之后,会选择适合自己的版本,现参考把安装过程分享出来. ...

  8. clipboard.js使用方法

    HTML data-clipboard-action=“ copy ”  或者“cut” data-clipboard-target="#domName" data-clipboa ...

  9. Android面试二之Fragment

    基本概念 Fragment,简称碎片,是Android 3.0(API 11)提出的,为了兼容低版本,support-v4库中也开发了一套Fragment API,最低兼容Android 1.6. F ...

  10. linux下面安装maven

    maven作为最近比较火的项目管理工具,对项目的jar包及其开元添加相应的插件的管理,很方便. 安装maven: 在官网上面去下载最新的maven的压缩包,apache-maven-3.3.1-bin ...