In graph theory, the complement of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G.

Now you are given an undirected graph G of N nodes and M bidirectional edges of unit length. Consider the complement of G, i.e., H. For a given vertex S on H, you are required to compute the shortest distances from S to all N−1

other vertices.

InputThere are multiple test cases. The first line of input is an integer T(1≤T<35) denoting the number of test cases. For each test case, the first line contains two integers N(2≤N≤200000) and M(0≤M≤20000). The following M lines each contains two distinct integers u,v(1≤u,v≤N) denoting an edge. And S (1≤S≤N) is given on the last line.OutputFor each of T test cases, print a single line consisting of N−1 space separated integers, denoting shortest distances of the remaining N−1 vertices from S (if a vertex cannot be reached from S, output ``-1" (without quotes) instead) in ascending order of vertex number.Sample Input

1
2 0
1

Sample Output

1

题意:给定一个无向图,求它的补图中S到每一点的最短路。

思路:我们BFS,长度从0,1,2...慢慢试探,由于是补图,显然试探的次数不会太多就可以弄完,所以我们可以暴力一点,一次BFS,我们取出队首u,其最短距离是dis[u],那么它没有被访问的点中(满足dis==-1),不与u相邻的点的最短距离是dis[u]+1,将其加入队首;  我们可以用set来表示未被访问的点。

由于S1.swap(S2)是两个set的指针交换,所以复杂度是O(1),比较快的。主要复杂度再S.clear那里,clear的复杂度是元素个数,由于是补图,所以可以假设放进去之后几个回合内就删完了,复杂度不会太高。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn],To[maxn],dis[maxn],num[maxn];
int q[maxn],tot,cnt,S,N;
void add(int u,int v){
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v;
}
void BFS()
{
dis[S]=;
set<int>S1,S2;
set<int>::iterator it;
queue<int>q;
q.push(S);
rep(i,,N) if(i!=S) S1.insert(i);
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i]; if(S1.find(v)==S1.end()) continue;
S1.erase(v); S2.insert(v);
}
for(it=S1.begin();it!=S1.end();it++) dis[*it]=dis[u]+,q.push(*it);
S1.swap(S2); S2.clear();
}
}
int main()
{
int T,M,u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&M);
cnt=; rep(i,,N) Laxt[i]=,dis[i]=-;
rep(i,,M){
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
scanf("%d",&S);
BFS();
rep(i,,N){
if(i!=S){
if(i!=N) printf("%d ",dis[i]);
else printf("%d\n",dis[i]);
}
}
}
return ;
}

HDU - 5876 :Sparse Graph (完全图的补图的最短路 -BFS&set)的更多相关文章

  1. HDU 5876 Sparse Graph 【补图最短路 BFS】(2016 ACM/ICPC Asia Regional Dalian Online)

    Sparse Graph Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  2. HDU 5876 Sparse Graph BFS 最短路

    Sparse Graph Problem Description   In graph theory, the complement of a graph G is a graph H on the ...

  3. HDU 5876 Sparse Graph

    Sparse Graph Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  4. hdu 5876 Sparse Graph 无权图bfs求最短路

    Sparse Graph Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) P ...

  5. HDU 5876 Sparse Graph(补图中求最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=5876 题意: 在补图中求s到其余各个点的最短路. 思路:因为这道题目每条边的距离都是1,所以可以直接用bfs来做 ...

  6. HDU 5876 Sparse Graph(补图上BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5876 题意: 有一个 n 个点无向图,再给你 m 对顶点, 代表着这 m 对顶点之间没有边, 除此之外 ...

  7. hdu 5876 Sparse Graph icpc大连站网络赛 1009 补图最短路

    BFS+链表 代码改自某博客 #include<stdio.h> #include<iostream> #include<algorithm> #include&l ...

  8. HDU 5876 Sparse Graph BFS+set删点

    Problem Description In graph theory, the complement of a graph G is a graph H on the same vertices s ...

  9. HDU 5867 Sparse Graph (2016年大连网络赛 I bfs+补图)

    题意:给你n个点m条边形成一个无向图,问你求出给定点在此图的补图上到每个点距离的最小值,每条边距离为1 补图:完全图减去原图 完全图:每两个点都相连的图 其实就是一个有技巧的bfs,我们可以看到虽然点 ...

随机推荐

  1. 数据结构实习 problem L 由二叉树的中序层序重建二叉树

    由二叉树的中序层序重建二叉树 writer:pprp 用层序中序来重建二叉树 代码点这里 其实本质上与前序中序建立二叉树没有什么太大区别 大概思路: 递归解法,对当前层进行处理,通过层序遍历可以得到当 ...

  2. Linux命令详解-cp

    cp 命令用来复制文件或者目录,是Linux系统中最常用的命令之一.一般情况下,shell会设置一个别名,在命令行下复制文件时,如果目标文件已经存在, 就会询问是否覆盖,不管你是否使用-i参数.但是如 ...

  3. IOS UI-瀑布流(UICollectionView)

    ViewController.m // // ViewController.m // IOS_0227_瀑布流 // // Created by ma c on 16/2/27. // Copyrig ...

  4. Shell 变量,Shell echo命令

    一.Shell 变量 定义变量时,变量名不加美元符号($,PHP语言中变量需要),如: your_name="runoob.com" 注意,变量名和等号之间不能有空格,这可能和你熟 ...

  5. configParse模块

    一.配置文件简介 在各种程序里面都有配置文件,为了对配置文件进行操作. python中引入了configParse模块进行操作. 配置数值类型: 配置文件中,我们看到的bool型,整数型,在我们操作的 ...

  6. grunt-init 默认模板目录更正

    grunt-init是依赖grunt项目管理的脚手架工具,各种优点无须赘述,默认的template路径的作用:可以把自定义或其他模板放置其中,应用的时候直接调用模板名,不用每次寻找路径: 在安装gru ...

  7. 006-对象—— static关键字 静态属性和方法的使用

    <?php /*static()静态属性: */ //静态属性: /*class Model{ private $mysqli; static $config;//数据库连接状态 functio ...

  8. DataTable RowFilter 过滤数据

    用Rowfilter加入过滤条件 eg: string sql = "select Name,Age,Sex from UserInfo"; DataTable dt = Data ...

  9. bzoj2700

    题解: dp dp[i][j]表示i个红,j个绿的最小代价 然后再加上两位k,l,表示k个红连,l个绿连 然后转移 代码: #include<bits/stdc++.h> using na ...

  10. log4cpp之Category

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...