类似于Linux管道重定向机制,前一个Map的输出直接作为下一个Map的输入,形成一个流水线。设想这样一个场景:在Map阶段,数据经过mapper01和mapper02处理;在Reduce阶段,数据经过sort和shuffle后,交给对应的reducer处理。reducer处理后并没有直接写入到Hdfs, 而是交给了另一个mapper03处理,它产生的最终结果写到hdfs输出目录中。

注意:对任意MR作业,Map和Reduce阶段可以有无限个Mapper,但reduer只能有一个。

package chain;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
import org.apache.hadoop.mapreduce.lib.chain.ChainReducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Chain { /**
* 手机 5000 * 需求:
* 电脑 2000 * 在第一个Mapper1里面过滤大于10000的数据
* 衣服 300   * 第二个Mapper2里面过滤掉大于100-10000的数据
* 鞋子 1200 * Reduce里面进行分类汇总并输出
* 裙子 434 * Reduce后的Mapper3里过滤掉商品名长度大于3的数据
* 手套 12 *
* 图书 12510 *
* 小商品 5   * 结果:
* 小商品 3 * 手套 12
* 订餐 2 * 订餐 2
*/ public static void main(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(Chain.class); /**
* 配置mapper1
* 注意此处带参数的构造函数:new Configuration(false)
*/
Configuration map1Conf = new Configuration(false);
ChainMapper.addMapper(job, //主作业
Mapper1.class, //待加入的map class
LongWritable.class, //待加入map class的输入key类型
Text.class, //待加入map class的输入value类型
Text.class, //待加入map class的输出key类型
VLongWritable.class, //待加入map class的输出value类型
map1Conf); //待加入map class的配置信息 //配置mapper2
ChainMapper.addMapper(job, Mapper2.class, Text.class, VLongWritable.class, Text.class, VLongWritable.class, new Configuration(false)); /**
* 配置Reducer
* 注意此处使用的是setReducer()方法
*/
ChainReducer.setReducer(job, Reducer_Only.class, Text.class, VLongWritable.class, Text.class, VLongWritable.class, new Configuration(false)); //配置mapper3
ChainReducer.addMapper(job, Mapper3.class, Text.class, VLongWritable.class, Text.class, VLongWritable.class, new Configuration(false)); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
} //Mapper1
public static class Mapper1 extends Mapper<LongWritable, Text, Text, VLongWritable>{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { /**
* Hadoop中默认的输入格式 TextOutputFormat 只支持UTF-8格式
* 所以解决GBK中文输出乱码问题的方法是:
* 1. 先将输入的Text类型的value转换为字节数组
* 2. 然后使用String的构造器String(byte[] bytes, int offset, int length, Charset charset)
* 3. 通过使用指定的charset解码指定的byte子数组,构造一个新的String
*/
String line=new String(value.getBytes(),0,value.getLength(),"GBK");
String[] splited = line.split(" "); //过滤大于10000的数据
if(Integer.parseInt(splited[1])<10000L){
context.write(new Text(splited[0]), new VLongWritable(Long.parseLong(splited[1])));
}
}
} //Mapper2
public static class Mapper2 extends Mapper<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void map(Text key, VLongWritable value, Context context)
throws IOException, InterruptedException { //过滤100-10000间的数据
if(value.get()<100L){
context.write(key, value);
}
}
} //Reducer
public static class Reducer_Only extends Reducer<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void reduce(Text key, Iterable<VLongWritable> v2s, Context context)
throws IOException, InterruptedException { long sumLong=0L; for(VLongWritable vLongWritable : v2s){
sumLong += vLongWritable.get(); context.write(key, new VLongWritable(sumLong));
}
}
} //Mapper3
public static class Mapper3 extends Mapper<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void map(Text key, VLongWritable value, Context context)
throws IOException, InterruptedException { String line=new String(key.getBytes(),0,key.getLength(),"GBK"); //过滤商品名称长度大于3
if(line.length()<3){
context.write(key, value);
}
}
}
}

MR案例:链式ChainMapper的更多相关文章

  1. 组合式+迭代式+链式 MapReduce

    1.迭代式mapreduce 一些复杂的任务难以用一次mapreduce处理完成,需要多次mapreduce才能完成任务,例如Pagrank,Kmeans算法都需要多次的迭代,关于mapreduce迭 ...

  2. Hadoop的ChainMapper和ChainReducer使用案例(链式处理)(四)

    不多说,直接上干货!      Hadoop的MR作业支持链式处理,类似在一个生产牛奶的流水线上,每一个阶段都有特定的任务要处理,比如提供牛奶盒,装入牛奶,封盒,打印出厂日期,等等,通过这样进一步的分 ...

  3. javascript链式运动框架案例

    javascript链式运动框架 任务描述: 当鼠标移入红色矩形时,该矩形宽度逐渐增加至400px,之后高度逐渐增加至400px; 当鼠标移出红色矩形时,该矩形高度逐渐减小至200px,之后宽度逐渐减 ...

  4. jQuery编程基础精华01(jQuery简介,顶级对象$,jQuery对象、Dom对象,链式编程,选择器)

    jQuery简介 什么是jQuery? jQuery就是一个JavaScript函数库,没什么特别的.(开源)联想SQLHelper类 jQuery能做什么?jQuery是做什么的? jQuery本身 ...

  5. jQuery链式编程

    链式编程 多行代码合并成一行代码,前提要认清此行代码返回的是不是对象.是对象才能进行链式编程 .html(‘val’).text(‘val’).css()链式编程,隐式迭代 链式编程注意:$(‘div ...

  6. 从零开始学 Web 之 jQuery(七)事件冒泡,事件参数对象,链式编程原理

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  7. Hadoop基础-Map端链式编程之MapReduce统计TopN示例

    Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...

  8. 模仿Masonry链式编程思想

    使用masonry 也将近一年多了,它的链式编程方式一直是很吸引我的. 之前一直没空好好思考它是如何实现,直到现在正好自己有空,因此写下链式编程的基本思路. 链式基本的编程形式如 a.property ...

  9. 链式mapreduce

    在hadoop 中一个Job中可以按顺序运行多个mapper对数据进行前期的处理,再进行reduce,经reduce后的结果可经个经多个按顺序执行的mapper进行后期的处理,这样的Job是不会保存中 ...

随机推荐

  1. Java基础ArrayList、Servlet与Filter

    一.技术分享 迭代器(Iterator) 迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构.迭代器通常被称为"轻量级"对象,因 ...

  2. Python--进阶处理4

    #================第四章:迭代器和生成器=================== # 函数 itertools.islice()适用于在迭代器和生成器上做切片操作. import ite ...

  3. Java 数组详解 - 用法、遍历、排序、实用API

    数组,就是相同数据类型的元素按一定顺序排列的集合,就是把有限个类型相同的变量用一个名字命名,然后用编号区分他们的变量的集合,这个名字称为数组名,编号称为下标. 组成数组的各个变量称为数组的分量,也称为 ...

  4. Python全栈day10(运算符)

    一,运算符 + - * . ** % // 二,in 和not in 一个字符串包含多个字符可以通过in判断字符是否属于改字符串 >>> name = "zhangsan& ...

  5. 巨蟒python全栈开发-第11阶段 devops-git入门1

    大纲 1.git命令初识 2.git reset与diff 3.git区域总结 4.git 远程仓库 5.git stash 1.git命令初识 2.git reset与diff 3.git区域总结 ...

  6. 让网站全面支持v4/v6 HTTP、HTTPS、HTTP/2最简单方法是增加Nginx反向代理服务器

    bg6cq/nginx-install: nginx install script https://github.com/bg6cq/nginx-install [原创]step-by-step in ...

  7. [LeetCode] 9.Palindrome Number - Swift

    Determine whether an integer is a palindrome. Do this without extra space. 题目意思:判断一个整数是否是回文数 例如:1232 ...

  8. pandas.read_csv() 部分参数解释

    read_csv()所有参数 pandas.read_csv( filepath_or_buffer, sep=',', delimiter=None, header='infer', names=N ...

  9. generateScriptFile.py脚本使用过程中遇到的问题及解决

    generateScriptFile.py脚本 #!/usr/bin/env python # -*- coding: utf-8 -*- """ use case: p ...

  10. MongoDB主从复制+集群

    一.读写分离的概念 读写分离,基本的原理是让主数据库处理事务性增.改.删操作(INSERT.UPDATE.DELETE),而从数据库处理SELECT查询操作.数据库复制被用来把事务性操作导致的变更同步 ...