请参照wordcount实现一个自己的MapReduce,需求为:
    a. 输入文件格式:
       xxx,xxx,xxx,xxx,xxx,xxx,xxx
    b. 输出文件格式:
       xxx,20
       xxx,30
       xxx.40
    c. 功能:根据命令行参数统计输入文件中指定关键字出现的次数,并展示出来
       例如:hadoop jar xxxxx.jar keywordcount xxx,xxx,xxx,xxx(四个关键字)
package demo0830;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import java.io.IOException;
import java.util.ArrayList; public class Demo0902 {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); if (args.length < 3) {
System.out.println("Usage: wordcount <input_path> <output_path> <keyword_list>");
return;
} //Add to target(静态方法)
String[] target_words = args[2].split(",");
for (String word : target_words) {
WCMap.addTargetWord(word.toLowerCase());
} Job job = Job.getInstance(conf);
job.setJarByClass(Demo0902.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(WCMap.class);
job.setReducerClass(WCReduce.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
}
public static class WCMap extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private final static ArrayList<String> target_words = new ArrayList<String>(); public static void addTargetWord(String word) {
target_words.add(word);
} public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] items = value.toString().toLowerCase().split(" ");
for (String item : items) { //filter keyword
if (target_words.contains(item)) {
word.set(item);
context.write(word, one);
}
}
}
} public static class WCReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
}

MR案例:WordCount改写的更多相关文章

  1. MR案例:倒排索引

    1.map阶段:将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value. 利用MR框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过 ...

  2. hadoop笔记之MapReduce的应用案例(WordCount单词计数)

    MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...

  3. MR案例:Reduce-Join

    问题描述:两种类型输入文件:address(地址)和company(公司)进行一对多的关联查询,得到地址名(例如:Beijing)与公司名(例如:Beijing JD.Beijing Red Star ...

  4. MR案例:小文件处理方案

    HDFS被设计来存储大文件,而有时候会有大量的小文件生成,造成NameNode资源的浪费,同时也影响MapReduce的处理效率.有哪些方案可以合并这些小文件,或者提高处理小文件的效率呢? 1). 所 ...

  5. Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况

    mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...

  6. MR案例:CombineFileInputFormat

    CombineFileInputFormat是一个抽象类.Hadoop提供了两个实现类CombineTextInputFormat和CombineSequenceFileInputFormat. 此案 ...

  7. MR案例:倒排索引 && MultipleInputs

    本案例采用 MultipleInputs类 实现多路径输入的倒排索引.解读:MR多路径输入 package test0820; import java.io.IOException; import j ...

  8. Hadoop基础------>MR框架-->WordCount

    认识Mapreduce Mapreduce编程思想 Mapreduce执行流程 java版本WordCount实例 1. 简介: Mapreduce源于Google一遍论文,是谷歌Mapreduce的 ...

  9. MR案例:输出/输入SequenceFile

    SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File).在SequenceFile文件中,每一个key-value对被看做是一条记 ...

随机推荐

  1. FZU 2140 Forever 0.5(找规律,几何)

    Problem 2140 Forever 0.5 Accept: 371 Submit: 1307 Special Judge Time Limit: 1000 mSec Memory Limit : ...

  2. 【Flask】在Flask中使用logger

    https://blog.csdn.net/yannanxiu/article/details/53557657 Flask在0.3版本后就有了日志工具logger,在Flask的官方文档中这么记载: ...

  3. mysql主从同步出现异常语句跳过错误处理

    1.跳过操作: mysql>slave stop; mysql>SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1 跳过一个事务 mysql>slave st ...

  4. Python面试应急5分钟!

    ​ 不论你是初入江湖,还是江湖老手,只要你想给自己一个定位那就少不了面试!面试的重要性相信大家都知道把,这就是我们常说的“第一印象”,给大家说一下我的面试心得把,面试前的紧张是要的,因为这能让你充分准 ...

  5. Unity3D优化技巧系列七

    笔者介绍:姜雪伟,IT公司技术合伙人.IT高级讲师,CSDN社区专家,特邀编辑.畅销书作者,国家专利发明人;已出版书籍:<手把手教你架构3D游戏引擎>电子工业出版社和<Unity3D ...

  6. sql server中使用xp_cmdshell

    关键词:sql server开启高级配置,使用Bat,cmdshell 1.sql server中使用xp_cmdshell --允许配置高级选项 GO RECONFIGURE GO . --开启xp ...

  7. redis实现cache系统实践(六)

    1. 介绍 rails中就自带有cache功能,不过它默认是用文件来存储数据的.我们要改为使用redis来存储.而且我们也需要把sessions也存放到redis中.关于rails实现cache功能的 ...

  8. JS根据userAgent值来判断浏览器的类型及版本【转】

    转自:http://blog.csdn.net/sunlovefly2012/article/details/22384255 JavaScript是前端开发的主要语言,我们可以通过编写JavaScr ...

  9. 使用Webdriver执行JS

    首先,我们使用如下方式初始化driver: WebDriver driver = new FirefoxDriver(); JavascriptExecutor jse = (JavascriptEx ...

  10. IOS中程序如何进行推送消息(本地推送,远程推送)2(下)

    内容中包含 base64string 图片造成字符过多,拒绝显示