#include<iostream>
#include<cstdio>
using namespace std; #define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点 typedef struct Edge //边
{
int u, v;
int cost;
}Edge; Edge edge[N];
int dis[N], pre[N]; bool Bellman_Ford()
{
for(int i = ; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? : MAX);
for(int i = ; i <= nodenum - ; ++i)
for(int j = ; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;
}
bool flag = ; //判断是否含有负权回路
for(int i = ; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
return flag;
} void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
} int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);
pre[original] = original;
for(int i = ; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
}
if(Bellman_Ford())
for(int i = ; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
return ;
}

4 6 1
1 2 20
1 3 5
4 1 -200
2 4 4
4 2 4
3 4 2

和:

4 6 1
1 2 2
1 3 5
4 1 10
2 4 4
4 2 4
3 4 2

bellman-ford(可判负权回路+记录路径)的更多相关文章

  1. poj 3259 bellman最短路推断有无负权回路

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36717   Accepted: 13438 Descr ...

  2. Bellman-ford算法与SPFA算法思想详解及判负权环(负权回路)

    我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借 ...

  3. Spfa 求含负权边的最短路 + 判断是否存在负权回路

    在Bellman-Ford算法之后,我们总算迎来了spfa算法,其实就如同堆优化Dijkstra算法之于朴素版Dijkstra算法,spfa算法仅仅是对Bellman-Ford算法的一种优化,但是在形 ...

  4. SPFA穿越虫洞——负权回路得判断

    poj3259 题目大意:穿越虫洞可以回到过去(时间--)所以能不能让时间倒流呢,就是判断有没有负权回路这次尝试用SPFA算法,也可以复习一下链式前向星 准备工作,队列q,spfa算法得有点就在于这个 ...

  5. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  6. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  7. ZOJ 3391 Haunted Graveyard(最短路负权回路)题解

    题意:好长...从(0,0)走到(w-1,h-1),墓碑不能走,走到传送门只能进去不能走到其他地方,经过传送门时间会变化w(可能为负),其他地方都能上下左右走.如果能无限返老还童输出Never,走不到 ...

  8. Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  9. spfa判负权边

    spfa判负环 如果一个点在spfa中被入队了大于n次 那么,我们就能肯定,有负环出现. 因为一个点入队时,他肯定被更新了一次. 所以........ 如果不存在负权环.这个点最多被更新节点数次 我们 ...

随机推荐

  1. UVA10870—Recurrences(简单矩阵快速幂)

    题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...

  2. window7修改hosts文件

    以管理员身份登录系统 ,修改 C:\Windows\System32\drivers\etc\hosts文件, 在最下面加入类似 192.168.80.10 master192.168.80.11 s ...

  3. GraphicsMagick 1.3.25 Linux安装部署

    1.安装相关依赖包 yum install -y gcc libpng libjpeg libpng-devel libjpeg-devel ghostscript libtiff libtiff-d ...

  4. linux中的周期调度器

    2017-06-27 上篇文章简要介绍了Linux进程调度,以及结合源代码窥探了下CFS的调度实例.但是没有深入内部区分析调度下面的操作,比如就绪队列的维护以及进程时间的更新等.本节就这些问题做深入讨 ...

  5. shell_03

    函数: fanction print_welcome(){ echo welcome now time is `date` } print_welcome 函数调用 print _welcome 00 ...

  6. kettle部分传输场景应用(每个作业都实验过啦)

    不过都是全量的,没有增量的,增量的需要自行写脚本实现 1.mysql->mysql 2.ftp->mysql(整个文件夹下面读取) 3.hdfs->mysql 4.sftp-> ...

  7. 转:在0~N(不包括N)范围内随机生成一个长度为M(M <= N)且内容不重复的数组

    1. 最朴素暴力的做法. void cal1() { , j = , num = ; int result[M]; result[] = rand() % N; //第一个肯定不重复, 直接加进去 ; ...

  8. JUnit之参数化测试、套件/成组测试的使用

    原文地址http://blog.csdn.net/yqj2065/article/details/39967065 参数化测试 正如数组替代int a0,a1,a2一样,测试加法时assertEqua ...

  9. Optimal Marks SPOJ - OPTM (按位枚举-最小割)

    题意:给一张无向图,每个点有其点权,边(i,j)的cost是\(val_i\ XOR \ val_j\).现在只给出K个点的权值,求如何安排其余的点,使总花费最小. 分析:题目保证权值不超过32位整型 ...

  10. Winter-1-A A + B 解题报告及测试数据

    Time Limit:1000MS Memory Limit:32768KB Description Calculate A + B. Input Each line will contain two ...