1272: [BeiJingWc2008]Gate Of Babylon

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 254  Solved: 120

Description

Input

Output

Sample Input

Sample Output

12

HINT

Source

【分析】

  T很小,跟以前的某一题很像啊,就是容斥。

  枚举不符合的(超过限制的),2^t,然后就是算 n种无限多的东东中选m个。

  经典的组合数题,$C_{n+m-1}^{n-1}$。不过是不超过m个,就是求和。

  $C_{n-1}^{n-1}+C_{n}^{n-1}+...C_{n+m-1}^{n-1}$

  这个也很经典啦,【又是数学卷子上的熟悉背影呵呵】,$C_{i}^{j}=C_{i-1}^{j-1}+C_{i-1}^{j}$

  在前面加一个$C_{n-1}^{n}$,最后化成$C_{n+m}^{n}$

  这题到了10^9,预处理幂也没用。于是上卢卡斯定理。

【有傻逼卡评测现在并没有交】

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 100010 int w[],Mod;
int inv[Maxn],pw[Maxn]; void init()
{
pw[]=;for(int i=;i<=Mod;i++) pw[i]=1LL*pw[i-]*i%Mod;
inv[]=;for(int i=;i<=Mod;i++) inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
inv[]=;for(int i=;i<=Mod;i++) inv[i]=1LL*inv[i-]*inv[i]%Mod;
} int get_c(int n,int m)
{
if(n<m) return ;
return 1LL*pw[n]*inv[m]%Mod*inv[n-m]%Mod;
} int lucas(int n,int m)
{
if(n<m) return ;
int ans=;
while(n&&m)
{
ans=1LL*get_c(n%Mod,m%Mod)*ans%Mod;
n/=Mod;m/=Mod;
}
return ans;
} int main()
{
int n,t,m;
scanf("%d%d%d%d",&n,&t,&m,&Mod); init(); for(int i=;i<=t;i++) scanf("%d",&w[i]);
int ans=;
for(int i=;i<=(<<t)-;i++)
{
int mm=m,ll=;
for(int j=;j<=t;j++) if(i&(<<j-)) mm-=w[j]+,ll++;
if(ll&) ans-=lucas(n+mm,n);
else ans+=lucas(n+mm,n);
ans=(ans%Mod+Mod)%Mod;
}
printf("%d\n",ans);
return ;
}

记录:LUCAS定理

For non-negative integers m and n and a prime p, the following congruence relation holds:

where

and

are the base p expansions of m and n respectively.

(2)证明:

n=(ak...a2,a1,a0)

p = (ak...a2,a1)

p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0

其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) 。

我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理。对于模p而言,我们有下面的式子成立:

上式左右两边的x的某项x^m(m<=n)的系数对模p同余。其中左边的x^m的系数是 C(n,m)。 而由于a0和b0都小于p,因此右边的x^m 一定是由 x^([m/p]*p) 和 x^b0 (即i=[m/p] , j=b0 ) 相乘而得 因此有:C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p)。

3、当p不是质数,还是中国剩余定理合并的套路。【不过有些特殊

拓展应用:上面的p是素数,那么不是素数怎么办呢?若不是素数,将p分解质因数,将C(n,m)分别按照(1)中的方法求对p的质因数的模,然后用中国剩余定理合并。比如计算C(10,3)%14。C(10,3)=120,14有两个质因数2和7,120%2=0,120%7=1,这样用(2,0)(7,1)找到最小的正整数8即是答案,即C(10,3)%14=8。注意,这里只适用于p分解完质因数后每个质因数只出现一次,例如12=2*2*3就不行,因为2出现了两次。若p分解完质因数后,含有某个质因数出现多次,比如C(10,3)%98,其中98=2*7*7,此时就要把7*7看做一个数,即:120%2=0,120%49=22,用(2,0)(49,22)和中国剩余定理得到答案22,即C(10,3)%98=22。此时,你又会有疑问,C(10,3)%49不也是模一个非素数吗?此时不同的是这个非素数不是一般的非素数,而是某个素数的某次方。下面(4)介绍如何计算C(n,m)%p^t(t>=2,p为素数)。

4、计算C(n,m)%p^t。

我们知道,C(n,m)=n!/m!/(n-m)!,若我们可以计算出n!%p^t,我们就能计算出m!%p^t以及(n-m)!%p^t。我们不妨设x=n!%p^t,y=m!%p^t,z=(n-m)!%p^t,那么答案就是x*reverse(y,p^t)*reverse(z,p^t)(reverse(a,b)计算a对b的乘法逆元)。那么下面问题就转化成如何计算n!%p^t。比如p=3,t=2,n=19,

n!=1*2*3*4*5*6*7*8* ……*19

=[1*2*4*5*7*8*… *16*17*19]*(3*6*9*12*15*18)

=[1*2*4*5*7*8*… *16*17*19]*3^6(1*2*3*4*5*6)

然后发现后面的是(n/p)!,于是递归即可。前半部分是以p^t为周期的[1*2*4*5*7*8]=[10*11*13*14*16*17](mod 9)。下面是孤立的19,可以知道孤立出来的长度不超过 p^t,于是暴力即可。那么最后剩下的3^6啊这些数怎么办呢?我们只要计算出n!,m!,(n-m)!里含有多少个p(不妨设a,b,c),那么a-b-c就是C(n,m)中p的个数,直接算一下就行。

转自:http://blog.csdn.net/yuyanggo/article/details/47380777

【还挺好打】

2017-04-16 14:13:29

【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)的更多相关文章

  1. BZOJ1272: [BeiJingWc2008]Gate Of Babylon

    题解: 多重集合的组合数?还是0-m?有些元素有个数限制? 多重集合的组合数可以插板法,0-m直接利用组合数的公式一遍求出来,个数限制注意到只有15个,那我们就暴力容斥了 AC了真舒畅.. 注意开lo ...

  2. ●BZOJ 1272 [BeiJingWc2008]Gate Of Babylon

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1272 题解: 容斥,Lucas定理本题的容斥考虑类似 [BZOJ 1042 [HAOI200 ...

  3. bzoj 1272: [BeiJingWc2008]Gate Of Babylon

    Description Solution 如果没有限制,答案就是 \(\sum_{i=0}^{m}C(n+i-1,i)\) 表示枚举每一次取的个数,且不超过 \(m\),方案数为可重组合 发现这个东西 ...

  4. [BeiJingWc2008]Gate Of Babylon

    <基尔伽美修>是人类历史上第一部英雄史诗,两河流域最杰出的文学作品之一.作品讲述了基尔伽美修一生的传奇故事.在动画Fate/staynight中,基尔伽美修与亚瑟王等传说中的英雄人物一起出 ...

  5. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  6. Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】

    题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合 首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[ ...

  7. 【BZOJ】【1272】【BeiJingWC2008】Gate of Babylon

    组合数学+容斥原理 Orz zyf-zyf 多重集组合数0.0还带个数限制?  ——>  <组合数学>第6章  6.2带重复的组合 组合数还要模P 0.0? ——> Lucas ...

  8. Gate Of Babylon bzoj 1272

    Gate Of Babylon (1s 128MB) babylon [问题描述] [输入格式] [输出格式] [样例输入] 2 1 10 13 3 [样例输出] 12 [样例说明] [数据范围] 题 ...

  9. 【BZOJ1272】Gate Of Babylon [Lucas][组合数][逆元]

    Gate Of Babylon Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description Input ...

随机推荐

  1. 【CodeForces】908 D. New Year and Arbitrary Arrangement

    [题目]Good Bye 2017 D. New Year and Arbitrary Arrangement [题意]给定正整数k,pa,pb,初始有空字符串,每次有pa/(pa+pb)的可能在字符 ...

  2. 【代码优化】调用optional delegates的最佳方法

    [转载请注明出处]http://www.cnblogs.com/lexingyu/p/3932475.html 本文是以下两篇blog的综合脱水,感谢两位作者为解放码农生产力所做的深入思考=.= Sm ...

  3. react CRA antd 按需加载配置 lessloader

    webpack配置 webpack.config.dev.js, webpack.config.prod同理. 'use strict'; const autoprefixer = require(' ...

  4. Verilog笔记.5.同步、异步

    在数字电路中经常有同步synchronism.异步asynchronism的概念.异步指输入信号和时钟无关:同步指输入信号和时钟信号有关,实际上就是输入信号和时钟信号进行了与运算或者与非运算.实际开发 ...

  5. redis基础之redis-sentinel(哨兵集群)(六)

    前言 redis简单的主从复制在生产的环境下可能是不行的,因为从服务器只能读不能写,如果主服务器挂掉,那么整个缓存系统不能写入了:redis自带了sentinel(哨兵)机制可以实现高可用. redi ...

  6. 关于select联动的两种做法

    第一种方法: function dong(){      var getSheng = document.getElementById("sheng");      var get ...

  7. centos7安装ssh服务

    1.查看是否安装了相关软件: rpm -qa|grep -E "openssh" 显示结果含有以下三个软件,则表示已经安装,否则需要安装缺失的软件 openssh-ldap-6.6 ...

  8. Spring之IOC,DI,动态代理,反射

    Spring框架是J2EE开发中一个使用广泛的框架,它使得dao和service层的维护更加便利.Spring框架有两个重要的特征,一个是IOC,另一个是AOP.我们在这里主要介绍IOC,以及IOC中 ...

  9. 转:google测试分享-分层测试

    原文: http://blog.sina.com.cn/s/blog_6cf812be0102vctg.html 上一次分享了google测试分享-SET和TE,有一些自动化测试的细节没有说清楚,那这 ...

  10. VMware-workstation-6.5.2-156735.exe

    480HD-KPZ2X-TA56C-4YTQQ VMware 12 专业版永久许可证密钥 5A02H-AU243-TZJ49-GTC7K-3C61N