题目传送门

道路费用

格式难调,题面就不放了。


  分析:

  这是一道要细(yan)心(jing)的生成树的好(gui)题。

  首先我们看到$k$的范围非常小,那么我们就可以直接$2^k$枚举每一条加边是否选择。然后我们再按权值大小依次加原边并且更新可以影响的加边的权值上限,再树形DP求解。但是这样复杂度是$O(2^k+NM\log M)$,需要考虑优化。

  我们能发现,不管加边选不选,有一些边都一定会加入到生成树中,那么我们就把这些边提前连接,然后把产生出的联通块缩点,然后就能形成一个$k+1$个点的新图和$k$条加边和$k$条原边,再用上面的操作就行了。现在的复杂度是$2^k+M\log M$,可以接受了。

  细节贼多,贼难调。。。

  Code:(代码贼丑。。。)

//It is made by HolseLee on 3rd Oct 2018
//Luogu.org P3639
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std; typedef long long ll;
const int N=1e5+, M=3e5+;
int n,m,K,sta,top,ag[],fa[N],fa2[N];
int mn[N],dep[N],head[N],p[N],cnte;
ll val[N],sum[N],ans;
struct Edge {
int to,nxt;
Edge() {}
Edge(const int _x,const int _y): to(_x),nxt(_y) {}
}edge[M];
struct Node {
int u,v,w;
bool operator < (const Node x) const {
return w < x.w;
}
}e[M],ne[],q[M];
bool mark[M]; inline int read()
{
char ch=getchar(); int num=; bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
num=num*+ch-''; ch=getchar();
}
return flag ? -num : num;
} int find(int x) { return fa[x]==x ? x : fa[x]=find(fa[x]); }
int find2(int x) { return fa2[x]==x ? x : fa2[x]=find2(fa2[x]); } inline void add(int x,int y)
{
edge[++cnte]=Edge(y,head[x]); head[x]=cnte;
edge[++cnte]=Edge(x,head[y]); head[y]=cnte;
} void get(int x)
{
sum[x]=val[x];
for(int i=head[x]; i; i=edge[i].nxt) {
if( edge[i].to==fa2[x] ) continue;
dep[edge[i].to]=dep[x]+;
fa2[edge[i].to]=x;
get(edge[i].to);
sum[x]+=sum[edge[i].to];
}
} inline void work()
{
cnte=;
for(int i=; i<=K+; ++i) {
int hl=ag[i]; head[hl]=fa2[hl]=;
fa[hl]=hl;mn[hl]=inf;
}
int u,v,fu,fv;
for(int i=; i<=K; ++i)
if( mark[i] ) {
u=find(ne[i].u), v=find(ne[i].v); if( u==v ) return;
fa[u]=v; add(ne[i].u,ne[i].v);
}
for(int i=; i<=K; ++i) {
u=find(q[i].u), v=find(q[i].v);
if( u!=v ) fa[u]=v, add(q[i].u, q[i].v);
}
get(sta);
for(int i=; i<=K; ++i) {
u=q[i].u, v=q[i].v;
if( dep[u]>dep[v] ) swap(u,v);
while( dep[v]>dep[u] ) mn[v]=min(mn[v],q[i].w), v=fa2[v];
while( u!=v ) {
mn[v]=min(mn[v],q[i].w); mn[u]=min(mn[u],q[i].w);
u=fa2[u], v=fa2[v];
}
}
ll now=;
for(int i=; i<=K; ++i)
if( mark[i] ) {
u=ne[i].u, v=ne[i].v;
if( dep[u]>dep[v] ) swap(u,v);
now+=mn[v]*sum[v];
}
if( ans<now ) ans=now;
} void dfs(int x)
{
if( x>K ) { work(); return; }
mark[x]=; dfs(x+); mark[x]=; dfs(x+);
} int main()
{
n=read(), m=read(), K=read();
for(int i=; i<=m; ++i) {
e[i].u=read(), e[i].v=read(), e[i].w=read();
}
sort(e+,e+m+);
for(int i=; i<=K; ++i) {
ne[i].u=read(), ne[i].v=read();
}
for(int i=; i<=n; ++i) p[i]=read(), fa[i]=fa2[i]=i;
for(int i=; i<=K; ++i) fa[find(ne[i].u)]=find(ne[i].v);
int u,v,fu,fv;
for(int i=; i<=m; ++i) {
u=e[i].u, v=e[i].v;
if( (fu=find(u))!=(fv=find(v)) ) {
fa[fu]=fa[fv]; fa2[find2(u)]=fa2[find2(v)];
}
}
sta=find2();
for(int i=; i<=n; ++i) {
val[fu=find2(i)]+=p[i]; if( fu==i ) ag[++ag[]]=i;
}
for(int i=; i<=K; ++i) {
ne[i].u=find2(ne[i].u); ne[i].v=find2(ne[i].v);
}
for(int i=; i<=m; ++i) {
e[i].u=find2(e[i].u); e[i].v=find2(e[i].v);
}
for(int i=; i<=m; ++i) {
u=find2(e[i].u), v=find2(e[i].v);
if( u!=v ) q[++top]=e[i], fa2[u]=v;
}
dfs(); printf("%lld\n",ans);
return ;
}

洛谷P3639 [APIO2013] 道路费用 [生成树的特殊算法]的更多相关文章

  1. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  2. [BZOJ3206][APIO2013]道路费用(最小生成树)

    3206: [Apio2013]道路费用 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 266[Submit][Status ...

  3. [Bzoj3206][Apio2013]道路费用(kruscal)(缩点)

    3206: [Apio2013]道路费用 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 536  Solved: 252[Submit][Status ...

  4. 洛谷.4015.运输问题(SPFA费用流)

    题目链接 嗯..水题 洛谷这网络流二十四题的难度评价真神奇.. #include <queue> #include <cstdio> #include <cctype&g ...

  5. 洛谷P4234 最小差值生成树(LCT,生成树)

    洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...

  6. 题解 洛谷 P3639 【[APIO2013]道路费用 】

    不难想到可以\(2^k\)去枚举\(k\)条新边的选择方案,然后加入原图中的边来使图连通,用当前方案的收益去更新答案,但是这样复杂度过不去. 可以先把\(k\)条新边都连上,然后再加入边权从小到大排序 ...

  7. 洛谷P2052 [NOI2011]道路修建(树形DP)

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...

  8. [APIO2013]道路费用

    题目描述 幸福国度可以用 N 个城镇(用 1 到 N 编号)构成的集合来描述,这些城镇 最开始由 M 条双向道路(用 1 到 M 编号)连接.城镇 1 是中央城镇.保证一个 人从城镇 1 出发,经过这 ...

  9. 题解 [APIO2013]道路费用

    link Description 幸福国度可以用 N 个城镇(用 1 到 N 编号)构成的集合来描述,这些城镇 最开始由 M 条双向道路(用 1 到 M 编号)连接.城镇 1 是中央城镇.保证一个 人 ...

随机推荐

  1. 什么是JavaFX

    什么是JavaFX JavaFx平台是一个富客户端平台解决方案,它能够使用应用程序开发人员轻松的创建跨平台的富客户端应用程序.它构建在Java技术的基础之上,JavaFX平台提供了一组丰富的图形和媒体 ...

  2. numpy数组中冒号和负号的含义

    numpy数组中":"和"-"的意义 觉得有用的话,欢迎一起讨论相互学习~Follow Me 在实际使用numpy时,我们常常会使用numpy数组的-1维度和& ...

  3. libuv移植到android

    编译环境是linux + ndk,你要先添加好NDK路径的环境变量,然后进入libuv目录执行以下两句完成编译. $ source ./android-configure $NDK gyp $ mak ...

  4. Spring使用注解方式就行事务管理

    使用步骤: 步骤一.在spring配置文件中引入<tx:>命名空间<beans xmlns="http://www.springframework.org/schema/b ...

  5. JVM调优总结(4):分代垃圾回收

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...

  6. 前端开发进阶:推荐的 CSS 书写规范

    写了这么久的CSS,但大部分前端er都没有按照良好的CSS书写规范来写CSS代码,这样会影响代码的阅读体验,这里总结一个CSS书写规范.CSS书写顺序供大家参考,这些是参考了国外一些文章以及我的个人经 ...

  7. 【Atcoder】AGC022 C - Remainder Game 搜索

    [题目]C - Remainder Game [题意]给定n个数字的序列A,每次可以选择一个数字k并选择一些数字对k取模,花费2^k的代价.要求最终变成序列B,求最小代价或无解.n<=50,0& ...

  8. 浅谈桶排思想及[USACO08DEC]Patting Heads 题解

    一.桶排思想 1.通过构建n个空桶再将待排各个元素分配到每个桶.而此时有可能每个桶的元素数量不一样,可能会出现这样的情况:有的桶没有放任何元素,有的桶只有一个元素,有的桶不止一个元素可能会是2+: 2 ...

  9. 记一次诡异的bug调试——————关于JDK1.7和JDK1.8中HashSet的hash(key)算法的区别

    现象: 测试提了一个bug,我完全复现不了,但是最吊诡的是在其他人的机器上都可以复现.起初以为是SVN合并后出现的冲突,后来经过对比法排查: step 1: 我本地开两个jetty,一个跑合并之前的版 ...

  10. Python ctypes中cast/py_object用法

    class ctypes.py_object Represents the C PyObject * datatype. Calling this without an argument create ...