Counting Binary Trees

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 564    Accepted Submission(s): 184

Problem Description
There are 5 distinct binary trees of 3 nodes:


Let T(n) be the number of distinct non-empty binary trees of no more than n nodes, your task is to calculate T(n) mod m.
 
Input
The input contains at most 10 test cases. Each case contains two integers n and m (1 <= n <= 100,000, 1 <= m <= 109) on a single line. The input ends with n = m = 0.
 
Output
For each test case, print T(n) mod m.
 
Sample Input
3 100
4 10
0 0
Sample Output
8
2
Source

题意:求Catalan数的前n项和。

直接递推公式就好了,但是有一个问题,递推式里有除法,而由于除数与模数不互质,不能预处理逆元,这里有一个求不互质同余除法的方法(前提是结果必须是整数,所以只能用来求Catalan,Stirling和组合数这样的数)

$\frac{a}{b}\equiv c (mod \  d)$,我们先将d质因数分解,然后对于$a$和$b$将d的质因子部分单独统计,剩余部分直接exgcd求逆元即可。

因为剩余部分满足互质所以可以直接做逆元,而我们有$p\equiv p(mod \ ap)$,所以最后质因子部分直接乘就可以了。

这样就解决了HNOI2017的70分做法。

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int maxn=100010;
typedef long long ll; ll ans,cnt[maxn];
vector<int> prime;
int n,m; void exgcd(ll a,ll b,ll &x,ll &y){
if (!b) x=1,y=0;
else exgcd(b,a%b,y,x),y-=x*(a/b);
} ll inv(ll a,ll p){ ll x,y; exgcd(a,p,x,y); return (x+p)%p; } void getPrime(){
ll t=m;
for (int i=2; i*i<=t; i++)
if (t%i==0){
prime.push_back(i);
while (t%i==0) t/=i;
}
if (t>1) prime.push_back(t);
} void solve(){
getPrime(); ans=1; ll res=1;
rep(i,2,n){
ll fz=4*i-2,fm=i+1;
for (int k=0; k<(int)prime.size(); k++)
if (fz%prime[k]==0)
while (fz%prime[k]==0) fz/=prime[k],cnt[k]++;
res=(res*fz)%m;
for (int k=0; k<(int)prime.size(); k++){
if (fm%prime[k]==0)
while (fm%prime[k]==0) fm/=prime[k],cnt[k]--;
}
if (fm>1) res=(res*inv(fm,m))%m;
ll t=res;
for (int k=0; k<(int)prime.size(); k++)
rep(s,1,cnt[k]) t=(t*prime[k])%m;
ans=(ans+t)%m;
}
printf("%lld\n",ans);
} int main(){
while(~scanf("%d%d",&n,&m) && n+m)
prime.clear(),memset(cnt,0,sizeof(cnt)),solve();
return 0;
}

[HDU3240]Counting Binary Trees(不互质同余除法)的更多相关文章

  1. hdu3240 Counting Binary Trees

    Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  2. POJ 2891- Strange Way to Express Integers CRT 除数非互质

    题意:给你余数和除数求x 注意除数不一定互质 思路:不互质的CRT需要的是将两个余数方程合并,需要用到扩展GCD的性质 合并互质求余方程 m1x -+ m2y = r2 - r1 先用exgcd求出特 ...

  3. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  4. hdu 3579 Hello Kiki 不互质的中国剩余定理

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  5. HDU3579Hello Kiki(中国剩余定理)(不互质的情况)

    One day I was shopping in the supermarket. There was a cashier counting coins seriously when a littl ...

  6. openjudge7834:分成互质组 解析报告

    7834:分成互质组 总时间限制:  1000ms 内存限制:  65536kB 描述 给定n个正整数,将它们分组,使得每组中任意两个数互质.至少要分成多少个组? 输入 第一行是一个正整数n.1 &l ...

  7. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  8. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  9. HDU5668 Circle 非互质中国剩余定理

    分析:考虑对给定的出圈序列进行一次模拟,对于出圈的人我们显然可以由位置,编号等关系得到一个同余方程 一圈做下来我们就得到了n个同余方程 对每个方程用扩展欧几里得求解,最后找到最小可行解就是答案. 当然 ...

随机推荐

  1. [bzoj 2460]线性基+贪心+证明过程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 网上很多题目都没说这个题目的证明,只说了贪心策略,我比较愚钝,在大神眼里的显然的策略 ...

  2. 关于Http协议、ASP.NET 核心知识(2)

    简介HTTP (对于http协议的描述我前部分有写,但基于保证文档独立完整性的原则,我再写一遍.反正又不花钱.) 这货的学名叫:超文本传输协议 英文名字:(HTTP,HyperText Transfe ...

  3. 【leetcode 简单】第二十三题 二叉树的最大深度

    给定一个二叉树,找出其最大深度. 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. 说明: 叶子节点是指没有子节点的节点. 示例: 给定二叉树 [3,9,20,null,null,15,7], ...

  4. MUI上传文件的方法

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. var_dump打印出来格式太乱 怎么调

    var_dump()和print_r() 输出的都是文本格式,在浏览器中就是这样如果你加载了 xdebug 扩展,那么 var_dump() 就会以 html 格式输出

  6. weblogic性能监控

    1.

  7. utsrelease.h 包含svn信息

    utsrelease.h是一个自动生成的文件,没有办法修改,但这个数据是根据Makefile和.config的内容进行生成的,通过修改这两个文件的内容,可以改变!/usr/src/linux/Make ...

  8. 64_p5

    php-nette-bootstrap-2.4.3-1.fc26.noarch.rpm 20-Feb-2017 07:19 16290 php-nette-caching-2.5.3-1.fc26.n ...

  9. 匿名函数、lambda表达式

    匿名函数 func = lambda x: y #x是形参,y是返回值 键字lambda表示匿名函数,冒号前面的x表示函数参数,冒号后面的y表示匿名函数的返回值. 例1:返回列表中长度大于等于3的元素 ...

  10. Django 1.10文档中文版Part2

    目录 2.5 第一个Django app,Part 3:视图和模板 2.5.1 概览 2.5.2 编写更多的视图 2.5.3 编写能实际干点活的视图 2.5.4 404错误 2.5.5 使用模板系统 ...