bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二
Time Limit: 10 Sec Memory Limit: 259 MB
Description
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
Input
Output
输出N行,每行一个整数,第i行输出C[i-1]。
Sample Input
3 1
2 4
1 1
2 4
1 4
Sample Output
12
10
6
1
HINT
Source
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<complex>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define cp complex<double>
#define inf 1000000007
#define ll long long
#define PI acos(-1)
#define N 400010
inline int rd()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
cp a[N],b[N];
int c[N],n,m,L=-,r[N];
void FFT(cp *x,int f)
{
for(int i=;i<n;i++) if(i<r[i]) swap(x[i],x[r[i]]);
for(int i=;i<n;i<<=)
{
cp wn(cos(PI/i),f*sin(PI/i));
for(int j=;j<n;j+=(i<<))
{
cp w(,),X,Y;
for(int k=;k<i;k++,w*=wn)
{
X=x[j+k];Y=w*x[i+j+k];
x[j+k]=X+Y;x[i+j+k]=X-Y;
}
}
}
}
int main()
{
n=rd()-;
for(int i=;i<=n;i++){a[i]=rd();b[n-i]=rd();}
m=n<<;for(n=;n<=m;n<<=) L++;
for(int i=;i<n;i++) r[i]=(r[i>>]>>)|((i&)<<L);
FFT(a,);FFT(b,);
for(int i=;i<n;i++) a[i]*=b[i];
FFT(a,-);
for(int i=m/;i<=m;i++) printf("%d\n",(int)(a[i].real()/n+0.1));
return ;
}
bzoj 2194: 快速傅立叶之二 -- FFT的更多相关文章
- bzoj 2194 快速傅立叶之二 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- BZOJ 2194 快速傅立叶之二 ——FFT
[题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...
- [BZOJ]2194: 快速傅立叶之二
题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...
- 【刷题】BZOJ 2194 快速傅立叶之二
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj 2194: 快速傅立叶之二【NTT】
看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...
- BZOJ 2194 快速傅立叶变换之二 | FFT
BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...
- 【BZOJ 2194】2194: 快速傅立叶之二(FFT)
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1273 Solved: 745 Description 请计算C[k]= ...
- 【BZOJ】2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...
随机推荐
- 爬虫实战--利用Scrapy爬取知乎用户信息
思路: 主要逻辑图:
- 树的直径(两个bfs)
题目链接:https://cn.vjudge.net/problem/POJ-2631 树的直径:树中的最长链 具体思路:随便找一个点bfs,然后找到最长的链,然后再以找到的点作为起点进行bfs,然后 ...
- Vuex-Mutation
更改 Vuex 的 store 中的状态的唯一方法是提交 mutation.Vuex 中的 mutation 非常类似于事件:每个 mutation 都有一个字符串的 事件类型 (type) 和 一个 ...
- 343.Integer Break---dp
题目链接:https://leetcode.com/problems/integer-break/description/ 题目大意:给定一个自然数,将其分解,对其分解的数作乘积,找出最大的乘积结果. ...
- Spring之IOC,DI,动态代理,反射
Spring框架是J2EE开发中一个使用广泛的框架,它使得dao和service层的维护更加便利.Spring框架有两个重要的特征,一个是IOC,另一个是AOP.我们在这里主要介绍IOC,以及IOC中 ...
- xshell 映射带跳板机服务器的端口到本地
1.配置xshell连接跳板机服务器: 2. 3.可用navicate等同过端口连接远程数据库.
- ASP.NET Core 2.0 MVC 发布部署--------- IIS 具体操作
.Net Core 部署到 IIS系统中的步骤 一.IIS 配置 启用 Web 服务器 (IIS) 角色并建立角色服务. 1.Windows Ddesktop 桌面操作系统(win7及更高版本) 导航 ...
- log优化
isLoggable(Level level) 包含计算的日志记录用isLoggable判断下. debug info warn error ,一般记录error, 但是其他里面的计算还是 ...
- Codefroces 919D Substring(拓扑排序+DP)
题目链接:http://codeforces.com/problemset/problem/919/D 题目大意:给你一张有向图,给你每个顶点上的字母和一些边,让你找出一条路径,路径上的相同字母数最多 ...
- HBase 入门笔记-安装篇
一.前言 接触HBase已近半年,从一无所知到问题的解决,在数据落地方面也有了一定的了解,在此记录这半年来碰到的一些问题和对一些数据落地方面的见解,本篇主要介绍一下hbase安装方面的信息 二.安装环 ...