2194: 快速傅立叶之二

Time Limit: 10 Sec  Memory Limit: 259 MB

Description

请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。

Input

第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。

Output

输出N行,每行一个整数,第i行输出C[i-1]。

Sample Input

5
3 1
2 4
1 1
2 4
1 4

Sample Output

24
12
10
6
1

HINT

 

Source

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<complex>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define cp complex<double>
#define inf 1000000007
#define ll long long
#define PI acos(-1)
#define N 400010
inline int rd()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
cp a[N],b[N];
int c[N],n,m,L=-,r[N];
void FFT(cp *x,int f)
{
for(int i=;i<n;i++) if(i<r[i]) swap(x[i],x[r[i]]);
for(int i=;i<n;i<<=)
{
cp wn(cos(PI/i),f*sin(PI/i));
for(int j=;j<n;j+=(i<<))
{
cp w(,),X,Y;
for(int k=;k<i;k++,w*=wn)
{
X=x[j+k];Y=w*x[i+j+k];
x[j+k]=X+Y;x[i+j+k]=X-Y;
}
}
}
}
int main()
{
n=rd()-;
for(int i=;i<=n;i++){a[i]=rd();b[n-i]=rd();}
m=n<<;for(n=;n<=m;n<<=) L++;
for(int i=;i<n;i++) r[i]=(r[i>>]>>)|((i&)<<L);
FFT(a,);FFT(b,);
for(int i=;i<n;i++) a[i]*=b[i];
FFT(a,-);
for(int i=m/;i<=m;i++) printf("%d\n",(int)(a[i].real()/n+0.1));
return ;
}

bzoj 2194: 快速傅立叶之二 -- FFT的更多相关文章

  1. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  2. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  3. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  4. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...

  5. 【刷题】BZOJ 2194 快速傅立叶之二

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  6. bzoj 2194: 快速傅立叶之二【NTT】

    看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...

  7. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  8. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  9. 【BZOJ】2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...

随机推荐

  1. 爬虫实战--利用Scrapy爬取知乎用户信息

    思路: 主要逻辑图:

  2. 树的直径(两个bfs)

    题目链接:https://cn.vjudge.net/problem/POJ-2631 树的直径:树中的最长链 具体思路:随便找一个点bfs,然后找到最长的链,然后再以找到的点作为起点进行bfs,然后 ...

  3. Vuex-Mutation

    更改 Vuex 的 store 中的状态的唯一方法是提交 mutation.Vuex 中的 mutation 非常类似于事件:每个 mutation 都有一个字符串的 事件类型 (type) 和 一个 ...

  4. 343.Integer Break---dp

    题目链接:https://leetcode.com/problems/integer-break/description/ 题目大意:给定一个自然数,将其分解,对其分解的数作乘积,找出最大的乘积结果. ...

  5. Spring之IOC,DI,动态代理,反射

    Spring框架是J2EE开发中一个使用广泛的框架,它使得dao和service层的维护更加便利.Spring框架有两个重要的特征,一个是IOC,另一个是AOP.我们在这里主要介绍IOC,以及IOC中 ...

  6. xshell 映射带跳板机服务器的端口到本地

    1.配置xshell连接跳板机服务器: 2. 3.可用navicate等同过端口连接远程数据库.

  7. ASP.NET Core 2.0 MVC 发布部署--------- IIS 具体操作

    .Net Core 部署到 IIS系统中的步骤 一.IIS 配置 启用 Web 服务器 (IIS) 角色并建立角色服务. 1.Windows Ddesktop 桌面操作系统(win7及更高版本) 导航 ...

  8. log优化

    isLoggable(Level level) 包含计算的日志记录用isLoggable判断下. debug  info warn   error   ,一般记录error,  但是其他里面的计算还是 ...

  9. Codefroces 919D Substring(拓扑排序+DP)

    题目链接:http://codeforces.com/problemset/problem/919/D 题目大意:给你一张有向图,给你每个顶点上的字母和一些边,让你找出一条路径,路径上的相同字母数最多 ...

  10. HBase 入门笔记-安装篇

    一.前言 接触HBase已近半年,从一无所知到问题的解决,在数据落地方面也有了一定的了解,在此记录这半年来碰到的一些问题和对一些数据落地方面的见解,本篇主要介绍一下hbase安装方面的信息 二.安装环 ...