大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算。

于是问题变成求1~k的所有2333进制数上每一位数的组合数之积。

数位DP,f[i][0/1]表示从高到低第i位,这一位没卡/卡了限制,的组合数之积,转移显然。

WA 8发,都想抽死自己。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=,P=;
int T,tot,tot2,C[N][N],S[N][N],a[N],b[N],f[N][];
ll n,k; int main(){
freopen("bzoj4591.in","r",stdin);
freopen("bzoj4591.out","w",stdout);
C[][]=; rep(i,,P) S[][i]=;
rep(i,,P){
C[i][]=S[i][]=;
rep(j,,P) C[i][j]=(C[i-][j-]+C[i-][j])%P,S[i][j]=(S[i][j-]+C[i][j])%P;
}
for (scanf("%d",&T); T--; ){
scanf("%lld%lld",&n,&k); tot=;
while (n) a[++tot]=n%P,n/=P;
rep(i,,tot) b[i]=k%P,k/=P;
f[tot+][]=; f[tot+][]=;
for (int i=tot; i; i--){
f[i][]=f[i+][]*S[a[i]][P-]%P;
if (b[i]) f[i][]=(f[i][]+f[i+][]*S[a[i]][b[i]-]%P)%P;
f[i][]=f[i+][]*C[a[i]][b[i]]%P;
}
printf("%d\n",(f[][]+f[][])%P);
}
return ;
}

[BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)的更多相关文章

  1. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  3. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  4. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  5. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  6. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  7. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  8. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  9. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

随机推荐

  1. 【不能继续浪啦】BZ做题记录[7.01~7.06]

    距离上次提交..><居然已经过去一个半月了... 然后再去看看人家RXDoi.. 差距越来越大啦... 最后更新时间:7.06 19:06 [07.03 21:02]夏令营自修课逃逃真爽. ...

  2. 【CodeForces】671 B. Robin Hood

    [题目]B. Robin Hood [题意]给定n个数字的序列和k次操作,每次将序列中最大的数-1,然后将序列中最小的数+1,求最终序列极差.n<=5*10^5,0<=k<=10^9 ...

  3. JavaScript 判断手机端访问并跳转 redirect mobile

    假如你的手机端网站在 /m 目录下 (function(a,b){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer| ...

  4. php隐藏WEBSHELL技巧

    把shell添加到网站logo图片里: cat logo.png shell.php > logo.png 在网站任意一个php文件里添加下面的最简单方法: fputs(fopen('/home ...

  5. python进阶之关键字和运算符触发魔法方法

    前言 python有众多的魔法方法,它们会在满足某种条件下触发执行,掌握好魔法方法的使用,可以加快程序的运行效率,同时减少逻辑调用. 关键字与魔法方法 python的一些魔法方法是关键字触发的,即py ...

  6. SVM问题再理解与分析——我的角度

    SVM问题再理解与分析--我的角度 欢迎关注我的博客:http://www.cnblogs.com/xujianqing/ 支持向量机问题 问题先按照几何间隔最大化的原则引出他的问题为 上面的约束条件 ...

  7. Linux 内核进程管理之进程ID【转】

    转自:http://www.cnblogs.com/hazir/p/linux_kernel_pid.html Linux 内核使用 task_struct 数据结构来关联所有与进程有关的数据和结构, ...

  8. ubuntu遇到的 the system is runing low-graphics mode 问题

    不知道修改了什么,然后开机显示the system is runing low-graphics mode 看过博客使用如下方法成功进入系统,但是显示分辨率很低,显示 built-in display ...

  9. python redis-string、list、set操作

    string操作 redis中的string在内存中都是按照一个key对应一个value来存储的 方法: set() 方法 : 写入一条数据 mset() 方法: 写入多条数据 , 可是Key-Val ...

  10. hdu 4678

    HDU 4768: Flyer 题意: 有N个社团,每个社团三个属性A,B,C,表示会向编号A+k*C的同学发传单(k=0,1,2...  && A+k*C <= B).题目保证 ...