以下只是本人的笔记,想法我自己都怀疑,内容不作为参考,

Floyd算法就比较暴力了,算法思想是三重循环,直接枚举所有的顶点,再两次for循环枚举所有点,验证以第一个点为中转点的两个点是否路径更短,具体就不实现了

Dijkstra算法可以很好的解决无负权图的最短路径问题,但是如果出现负值权值就会失效。此时就需要BF算法,BF和dj算法都能解决单源最短路径问题,但是算法思想是完全不同的,dj是选取到起点路径最短的点,然后以该点为中心更新相关联的路径长,最外层的n次循环保证的是n个点均能被访问(见上篇博客)

但是BF算法完全不同,最外层的n-1次循环是为了保证成功构建n-1条路径,V个结点正好V-1个路径,如果转化成树则深度最多是V,但是在函数开始前根节点已经被访问了,所以最多只需要访问V-1次,其实不一定需要n-1次执行,可以适当剪枝,比如在n次循环中if(d[u]+length[u->v]<d[v)均为假,即没有可以松弛的边了,那就可以提前结束函数。内层的两次for循环的思想和dj差不多。

  1. bool Bellman(int s){
  2. for(int i=0;i<n-1;i++){
  3. for(each edge u->v){
  4. if(d[u]+length[u->v]<d[v]){
  5. d[v]=d[u]+length[u->v];
  6. }
  7. }
  8. }
  9. for(each dege u->v){
  10. if(d[u]+length[u->v]<d[v])
  11. return false;
  12. }
  13. return true;
  14. }

Bellman-Ford(BF)和Floyd算法的更多相关文章

  1. 求最短路径的三种算法: Ford, Dijkstra和Floyd

    Bellman-Ford算法 Bellman-Ford是一种容易理解的单源最短路径算法, Bellman-Ford算法需要两个数组进行辅助: dis[i]: 存储顶点i到源点已知最短路径 path[i ...

  2. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  3. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  4. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  5. 图论——最短路径 Dijkstra算法、Floyd算法

    1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...

  6. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  7. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  8. Floyd算法应用-医院选址问题

    1)问题描述 n个村庄之间的交通图可以用有向网图来表示,图中边<vi, vj>上的权值表示从村庄i到村庄j的道路长度.现在要从这n个村庄中选择一个村庄新建一所医院,问这所医院应建在哪个村庄 ...

  9. 最短路径——Floyd算法(含证明)

    通过dij,ford,spfa等算法可以快速的得到单源点的最短路径,如果想要得到图中任意两点之间的最短路径,当然可以选择做n遍的dij或是ford,但还有一个思维量较小的选择,就是floyd算法. 多 ...

随机推荐

  1. spring-boot-maven-plugin插件作用

    转自:http://blog.csdn.net/hotdust/article/details/51404828 OM 文件中添加了“org.springframework.boot:spring-b ...

  2. CodeForces 681C Heap Operations (模拟题,优先队列)

    题意:给定 n 个按顺序的命令,但是可能有的命令不全,让你补全所有的命令,并且要求让总数最少. 析:没什么好说的,直接用优先队列模拟就行,insert,直接放入就行了,removeMin,就得判断一下 ...

  3. C# 订单号的生成

    /**        * 根据当前系统时间加随机序列来生成订单号         * @return 订单号        */        public static string Generat ...

  4. JS 单例模式

    <parctical common lisp>的作者曾说,如果你需要一种模式,那一定是哪里出了问题.他所说的问题是指因为语言的天生缺陷,不得不去寻求和总结一种通用的解决方案. 不管是弱类型 ...

  5. TextView 垂直居中

     需要区分的是这里的top,bottom,ascent,descent,baseline是指字内容的属性,通过getPaint().getFontMetricsInt()来获取得到.和字体内容的外部容 ...

  6. C#中使用多线程访问Winform中控件的若干问题

    我们在做winform应用的时候,大部分情况下都会碰到使用多线程控制界面上控件信息的问题.然而我们并不能用传统方法来做这个问题,下面我将详细的介绍. 首先来看传统方法: public partial  ...

  7. 【微服务架构】SpringCloud之Feign(五)

    Feign简介 Feign 是一个声明web服务客户端,这便得编写web服务客户端更容易,使用Feign 创建一个接口并对它进行注解,它具有可插拔的注解支持包括Feign注解与JAX-RS注解,Fei ...

  8. 在Android模拟器里安装apk

    [原文]http://Android.tgbus.com/android/tutorial/201104/349532.shtml 1.运行SDK Manager,选择模拟器,并运行模拟器. 2.将需 ...

  9. 纸壳CMS(ZKEACMS)体验升级,快速创建页面,直接在页面中修改内容

    关于纸壳CMS 纸壳CMS又名 ZKEACMS Core 是ZKEACMS的 .net core 版本,可运行在 .net core 1.1 平台上.是一个开源的CMS. 纸壳CMS对于 ZKEACM ...

  10. Django FileFieldManage

    default_storage >>> from django.core.files.base import ContentFile >>> from django ...