案例1

 from keras.models import Sequential
from keras.layers import Dense, LSTM, Activation
from keras.optimizers import adam, rmsprop, adadelta
import numpy as np
import matplotlib.pyplot as plt
#construct model
models = Sequential()
models.add(Dense(100, init='uniform',activation='relu' ,input_dim=1))
models.add(Dense(50, activation='relu'))
models.add(Dense(1,activation='tanh'))
adamoptimizer = adam(lr=0.001, beta_1=0.9, beta_2=0.999, decay=0.00001)
models.compile(optimizer='rmsprop', loss='mse',metrics=["accuracy"] ) #train data
dataX = np.linspace(-2 * np.pi,2 * np.pi, 1000)
dataX = np.reshape(dataX, [dataX.__len__(), 1])
noise = np.random.rand(dataX.__len__(), 1) * 0.1
dataY = np.sin(dataX) + noise models.fit(dataX, dataY, epochs=100, batch_size=10, shuffle=True, verbose = 1)
predictY = models.predict(dataX, batch_size=1)
score = models.evaluate(dataX, dataY, batch_size=10) print(score)
#plot
fig, ax = plt.subplots()
ax.plot(dataX, dataY, 'b-')
ax.plot(dataX, predictY, 'r.',) ax.set(xlabel="x", ylabel="y=f(x)", title="y = sin(x),red:predict data,bule:true data")
ax.grid(True) plt.show()

案例2:

 import numpy as np

 import random
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.optimizers import Adam,SGD X = np.linspace(1,20,1000)
X = X[:,np.newaxis]
y = np.sin(X) + np.random.normal(0,0.08,(1000,1))
min_max_scaler = MinMaxScaler((0,1))
y_train = min_max_scaler.fit_transform(y)
x_train = min_max_scaler.fit_transform(X) model1=Sequential()
model1.add(Dense(1000,input_dim = 1))
model1.add(Activation('relu'))
model1.add(Dense(1))
model1.add(Activation('sigmoid'))
adam = Adam(lr = 0.001)
sgd = SGD(lr = 0.1,decay=12-5,momentum=0.9)
model1.compile(optimizer = adam,loss = 'mse')
print('-------------training--------------')
model1.fit(x_train,y_train,batch_size= 12,nb_epoch = 500,shuffle=True)
Y_train_pred=model1.predict(x_train)
plt.scatter(x_train,y_train)
plt.plot(x_train,Y_train_pred,'r-')
plt.show()

案例3

 #加激活函数的方法2:model.add(Dense(units=10,input_dim=1,activation=' '))
from keras.optimizers import SGD
from keras.layers import Dense,Activation
#构建一个顺序模型
model=Sequential() #在模型中添加一个全连接层
#units是输出维度,input_dim是输入维度(shift+两次tab查看函数参数)
#输入1个神经元,隐藏层10个神经元,输出层1个神经元
model.add(Dense(units=10,input_dim=1,activation='relu')) #增加非线性激活函数
model.add(Dense(units=1,activation='relu')) #默认连接上一层input_dim=10 #定义优化算法(修改学习率)
defsgd=SGD(lr=0.3) #编译模型
model.compile(optimizer=defsgd,loss='mse') #optimizer参数设置优化器,loss设置目标函数 #训练模型
for step in range(3001):
#每次训练一个批次
cost=model.train_on_batch(x_data,y_data)
#每500个batch打印一个cost值
if step%500==0:
print('cost:',cost) #打印权值和偏置值
W,b=model.layers[0].get_weights() #layers[0]只有一个网络层
print('W:',W,'b:',b) #x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data) plt.scatter(x_data,y_data) plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()

案例4:

 #加激活函数的方法1:mode.add(Activation(''))
from keras.optimizers import SGD
from keras.layers import Dense,Activation
import numpy as np np.random.seed(0)
x_data=np.linspace(-0.5,0.5,200)
noise=np.random.normal(0,0.02,x_data.shape)
y_data=np.square(x_data)+noise #构建一个顺序模型
model=Sequential() #在模型中添加一个全连接层
#units是输出维度,input_dim是输入维度(shift+两次tab查看函数参数)
#输入1个神经元,隐藏层10个神经元,输出层1个神经元
model.add(Dense(units=10,input_dim=1))
model.add(Activation('tanh')) #增加非线性激活函数
model.add(Dense(units=1)) #默认连接上一层input_dim=10
model.add(Activation('tanh')) #定义优化算法(修改学习率)
defsgd=SGD(lr=0.3) #编译模型
model.compile(optimizer=defsgd,loss='mse') #optimizer参数设置优化器,loss设置目标函数 #训练模型
for step in range(3001):
#每次训练一个批次
cost=model.train_on_batch(x_data,y_data)
#每500个batch打印一个cost值
if step%500==0:
print('cost:',cost) #打印权值和偏置值
W,b=model.layers[0].get_weights() #layers[0]只有一个网络层
print('W:',W,'b:',b) #x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data) plt.scatter(x_data,y_data) plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()

案列5

 import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam np.random.seed(0)
points = 500
X = np.linspace(-3, 3, points)
y = np.sin(X) + np.random.uniform(-0.5, 0.5, points) model = Sequential()
model.add(Dense(50, activation='sigmoid', input_dim=1))
model.add(Dense(30, activation='sigmoid'))
model.add(Dense(1))
adam = Adam(lr=0.01)
model.compile(loss='mse', optimizer=adam)
model.fit(X, y, epochs=50) predictions = model.predict(X)
plt.scatter(X, y)
plt.plot(X, predictions, 'ro')
plt.show()

案列6:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
x = list(np.arange(0,4,0.1))
#给3次多项式添加噪音
y = list(map(lambda val: val**3*3 + np.random.random()*20 , x) ) plt.scatter(x, y) #指明用3次多项式匹配
w = np.polyfit (x, y, 3)
fn = np.poly1d(w) #打印适配出来的参数和函数
print(w)
print(fn) plt.plot(x, fn(x))

案列7

 1 %matplotlib inline
2 import matplotlib.pyplot as plt
3 from keras.datasets import mnist
4 from keras.models import Sequential
5 from keras.layers.core import Dense, Activation
6 from keras.layers.advanced_activations import LeakyReLU, PReLU
7 from keras.optimizers import SGD
8
9 x = list(np.arange(0,4,0.1))
10 #给3次多项式添加噪音
11 y = list(map(lambda val: val**3*3 + np.random.random()*20 , x) )
12
13 model = Sequential()
14 #神经元个数越多,效果会越好,收敛越快,太少的话难以收敛到所需曲线
15 model.add(Dense(100, input_shape=(1,)))
16
17 #Relu,得到的是一条横线
18 #Tanh,稍稍好于Relu,但是拟合的不够
19 #sigmoid, 只要神经元个数足够(50+),训练1000轮以上,就能达到比较好的效果
20 model.add(Activation('sigmoid'))
21 #model.add(LeakyReLU(alpha=0.01))
22 #model.add(Dense(3))
23
24 model.add(Dense(1))
25 model.compile(optimizer="sgd", loss="mse")
26 model.fit(x, y, epochs=2000, verbose=0)
27
28 print(type(fn(3)))
29 print(fn(1))
30 print(fn(3))
31
32 plt.scatter(x, y)
33 plt.plot(x, model.predict(x))

Keras 回归 拟合 收集的更多相关文章

  1. [R] 回归拟合

    如下示例 > fit <- lm(y~x, data = data01) > summary(fit) Call: lm(formula = data01$P ~ data01$M, ...

  2. NN:实现BP神经网络的回归拟合,基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(siz ...

  3. [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...

  4. 局部加权回归LOWESS

    1. LOWESS 用kNN做平均回归: \[ \hat{f(x)} = Ave(y_i | x_i \in N_k(x)) \] 其中,\(N_k(x)\)为距离点x最近k个点组成的邻域集合(nei ...

  5. logistic逻辑回归公式推导及R语言实现

    Logistic逻辑回归 Logistic逻辑回归模型 线性回归模型简单,对于一些线性可分的场景还是简单易用的.Logistic逻辑回归也可以看成线性回归的变种,虽然名字带回归二字但实际上他主要用来二 ...

  6. 数学建模:1.概述& 监督学习--回归分析模型

    数学建模概述 监督学习-回归分析(线性回归) 监督学习-分类分析(KNN最邻近分类) 非监督学习-聚类(PCA主成分分析& K-means聚类) 随机算法-蒙特卡洛算法 1.回归分析 在统计学 ...

  7. seaborn(2)---画分类图/分布图/回归图/矩阵图

    二.分类图 1. 分类散点图 (1)散点图striplot(kind='strip') 方法1: seaborn.stripplot(x=None, y=None, hue=None, data=No ...

  8. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  9. Machine Learning With Go 第4章:回归

    4 回归 之前有转载过一篇文章:容量推荐引擎:基于吞吐量和利用率的预测缩放,里面用到了基本的线性回归来预测容器的资源利用情况.后面打算学一下相关的知识,译自:Machine Learning With ...

随机推荐

  1. JavaScript Math方法的基本使用

    1.Math.sin()方法 定义:返回一个数的正弦. 语法:Math.sin(x),x必须是一个数值. 实例: <!DOCTYPE html> <html lang="e ...

  2. .NET CORE应用程序启动

    ASP.NET Core 应用是在其 Main 方法中创建 Web 服务器的控制台应用: Main 方法调用 WebHost.CreateDefaultBuilder,通过生成器模式来创建web主机. ...

  3. JS正则表达式的创建、匹配字符串、转义、字符类、重复以及常用字符

    正则表达式都是操作字符串的 作用:对数据进行查找.替换.有效性验证 创建正则表达式的两种方式: // 字面量方式 /js/ // 构造函数方式 regular expression new RegEx ...

  4. Mysql:初识MySQL

    转载自:https://www.cnblogs.com/hellokuangshen/archive/2019/01/09/10246029.html Mysql:初识MySQL 只会写代码的是码农: ...

  5. centos7.x中安装SQL Server

    本文内容是采集的好几位博主的博文进行的一个整合,内容更为精准和详尽,以下是我参照的几篇博文地址: 微软官方文档:https://docs.microsoft.com/zh-cn/sql/linux/s ...

  6. VBA-FileToFileUpdate

    Public Sub FileToFileUpdate(ByVal fileName As String, ByVal strFrm As String, ByVal strTo As String) ...

  7. iMacros 入门教程-基础函数介绍(2)

    imacros 的 pos 参数是什么意思 position的缩写,如果有 2 个以上的元素共用完全相同的属性(比方说同一个小区的同一栋楼),这个 POS 的参数可以借由不同位置来帮助明确定位(也就是 ...

  8. 【Java】简易Socket连接实现

    客户端: import java.io.*; import java.net.Socket; import java.text.SimpleDateFormat; import java.util.D ...

  9. SpringBoot图文教程6—SpringBoot中过滤器的使用

    有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文系列教程技术大纲 鹿老师的Java笔记 SpringBo ...

  10. CentOS7安装docker和docker-compose

    1.安装docker # 使用yum安装docker yum -y install docker # 启动 systemctl start docker.service # 设置为开机自启动 syst ...