传送门

解题思路

  比较有意思的一道数学题。首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移。然后有一个比较有意思的结论就是把求\(x^i\)这种东西变成组合数去求,具体来说就是\(n^k=\sum\limits_{i=1}^k\dbinom{n}{i}*S[k][i]*i!\),\(S\)表示第二类斯特林数,第二类斯特林数可以表示为有\(n\)个盒子要装\(m\)个小球,然后在给盒子和求加上编号就可以得出上面的式子。这样的话在根据帕斯卡三角,每个组合数只会被两个组合数递推出来,所以就能\(O(nk)\)的维护了。参考了这位大佬的博客:https://blog.csdn.net/Mys_C_K/article/details/79942486?utm_source=blogxgwz3

代码

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std;
const int MAXN = 50005;
const int MOD = 10007;
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
} int n,head[MAXN],cnt,to[MAXN<<1],nxt[MAXN<<1],ans[MAXN];
int s[155][155],k,fac[MAXN],f[MAXN][155],g[MAXN][155]; inline void add(int bg,int ed){
to[++cnt]=ed,nxt[cnt]=head[bg],head[bg]=cnt;
} inline int calc(int x,int y,int k){
return (g[x][k]-f[y][k]-(k>0?f[y][k-1]:0)+2*MOD)%MOD;
} void prework(){
fac[1]=1;s[0][0]=1;
for(int i=2;i<=k;i++) fac[i]=fac[i-1]*i%MOD;
for(int i=1;i<=k;i++)
for(int j=1;j<=i;j++)
(s[i][j]=s[i-1][j-1]+j*s[i-1][j]%MOD)%=MOD;
} void dfs1(int x,int fa){
f[x][0]=1;int u;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==fa) continue;dfs1(u,x);f[x][0]+=f[u][0];f[x][0]%=MOD;
for(int j=1;j<=k;j++)
f[x][j]+=f[u][j]+f[u][j-1],f[x][j]=f[x][j]>=MOD?f[x][j]-MOD:f[x][j];
}
} void dfs2(int x,int fa){
for(int i=0;i<=k;i++) g[x][i]+=f[x][i],g[x][i]%=MOD;
int u;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==fa) continue;
g[u][0]=g[x][0]-f[u][0];
for(int i=1;i<=k;i++)
g[u][i]=calc(x,u,i)+calc(x,u,i-1),g[u][i]%=MOD;
dfs2(u,x);
}
} int main(){
int now,A,B,Q,L,tmp,x,y;
n=rd(),k=rd(),L=rd(),now=rd(),A=rd(),B=rd(),Q=rd();
for (int i=1;i<n;i++) {
now=(now*A+B)%Q;
tmp=i<L?i:L;x=i-now%tmp,y=i+1;
add(x,y),add(y,x);
}
prework();dfs1(1,0);dfs2(1,0);
for(int i=1;i<=n;i++)
for(int j=1;j<=k;j++)
ans[i]=(ans[i]+(LL)fac[j]*g[i][j]%MOD*s[k][j]%MOD)%MOD;
for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
return 0;
}

BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)的更多相关文章

  1. P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)

    传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...

  2. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  3. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  4. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  5. bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...

  6. bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...

  7. BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp

    这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...

  8. bzoj 2159: Crash 的文明世界

    Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Descripti ...

  9. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

随机推荐

  1. d3js 折线图+柱图

    <!DOCTYPE html> <html> <body> <div id="vis"><svg></svg> ...

  2. Linux常用查看日志命令tail

    常用查看日志操作语句:   tail web.2016-06-06.log -n 300 -f                       查看底部即最新300条日志记录,并实时刷新 grep 'ni ...

  3. php 实现的功能

    1.php写日志函数 (如:前端请求日志记录) : https://www.cnblogs.com/lvchenfeng/p/6794822.html 2.php中(服务器)使用CURL实现GET和P ...

  4. PHP面试 PHP基础知识 七(文件及目录处理)

    文件操作 文件打开函数 fopen()函数 //用来打开一个文件 打开时需要指定打开模式 语法:fopen( filename, mode, include_path, context); filen ...

  5. python使用threading获取线程函数返回值的实现方法

    python使用threading获取线程函数返回值的实现方法 这篇文章主要介绍了python使用threading获取线程函数返回值的实现方法,需要的朋友可以参考下 threading用于提供线程相 ...

  6. Vmware ESXi安装群晖Synology DSM 5.x

    简介 在Vmware ESXI中安装群晖Synology DSM 5.0 (4528) 文件准备 Vmware ESXi用户安装需要的文件 NB_x64_5032_DSM_50-4528_Xpenol ...

  7. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  8. 如何省略.jsx文件名

    在webpack.config.js文件夹中module.exports中添加: resolve:{ extensions:[".js", ".jsx", &q ...

  9. DLL 调用 对话框 以及 如何获取调用dll 应用程序(窗口程序)的窗口句柄

    1.一般创建需要的窗口,转换成相应的窗口类: 声明一个导出函数,来处理窗口的显示,如: CTest test; extern "C" __declspec(dllexport) v ...

  10. JDK8新特性之函数式接口

    什么是函数式接口 先来看看传统的创建线程是怎么写的 Thread t1 = new Thread(new Runnable() { @Override public void run() { Syst ...