在加权无向图上求出一条从1号结点到N号结点的路径,使路径上第K+1大的边权尽量小
二分+最短路算法

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define maxn 100010
using namespace std;
const int INF = 0x3f3f3f3f;
struct Node {
int p;
int len;
Node(int a, int b) :p(a), len(b) {}
};
vector<Node>G[maxn];
void insert(int be, int en, int len) {
G[be].push_back(Node(en, len));
}
bool operator <(const Node a, const Node b) {
return a.len > b.len;
}
int vis[maxn];
int dis[maxn];
int n, m, k;
int dijstra(int be, int range) {
memset(vis, 0, sizeof(vis));
memset(dis, INF, sizeof(dis));
priority_queue<Node>que;
que.push(Node(be, 0));
dis[be] = 0;
while (!que.empty()) {
Node ans = que.top();
que.pop();
if (vis[ans.p]) continue;
vis[ans.p] = 1;
int x = ans.p;
for (int i = 0; i < G[x].size(); i++) {
int p = G[x][i].p;
int len;
if (G[x][i].len >= range) len = 1;
else len = 0; if (dis[p] > dis[x] + len) {
dis[p] = dis[x] + len;
que.push(Node(p, dis[p]));
}
}
}
return dis[n];
}
int check(int mid) {
int len = dijstra(1, mid);
if (len >= k + 1) return 0;
else return 1;
}
int main() {
int be, en, len;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &be, &en, &len);
insert(be, en, len);
insert(en, be, len);
}
int l = 0;
int r = 10000000;
int mid;
int flag = 0; while (r - l > 1) {
mid = (r + l) / 2;
if (check(mid)) {//往小了压
r = mid;
}
else {
l = mid ;
}
}
if (r == 10000000) cout << "-1" << endl;
else cout << l << endl;
return 0;
}
在加权无向图上求出一条从1号结点到N号结点的路径,使路径上第K+1大的边权尽量小的更多相关文章
- c编程:求出4×4矩阵中最大和最小元素值及其所在行下标和列下标,求出两条主对角线元素之和。
//求出4×4矩阵中最大和最小元素值及其所在行下标和列下标,求出两条主对角线元素之和 #include <stdio.h> int main() { int sum=0; int max, ...
- tomcat服务器用Servlet类查找磁盘文件上的Json信息,如果匹配则在浏览器上显示出该条内容的全部信息
package com.swift; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOE ...
- Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)
上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...
- atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7
atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7 1. 实现原理 1 2. 大的文件上传原理::使用applet 1 3. 新的bp 2 1. 性能提升---分割小文件上传 ...
- 对于给定的整数集合S,求出最大的d,使得a+b+c=d。
对于给定的整数集合S,求出最大的d,使得a+b+c=d.a,b,c,d互不相同,且都属于S.集合的元素个数小于等于2000个,元素的取值范围在[-2^28,2^28 - 1],假定可用内存空间为100 ...
- winform 根据两点求出线上所有点及画出这条线
找出所有点: 根据斜率按照一个方向递增,求出对应的另一个方向的整数值. Point pStart = new Point(0, 2); Point pEnd = new Point(8, 2); // ...
- hdu 1595 find the longest of the shortest【最短路枚举删边求删除每条边后的最短路,并从这些最短路中找出最长的那条】
find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others) Memory Limit: 32768/32768 ...
- 最短路径(给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。)
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 例: 输入: [ [1,3,1], [1,5,1], [ ...
- 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。
/** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...
随机推荐
- 基于颜色的R2V软件快速矢量化
跟同学一起做SRTP,矢量化,作图的工作点名让我去做,人家说,谁让你是学地理信息的呢?哎,什么时候地理信息不再被别人当成制图画图的,我们专业就有希望了. 话虽然这么说,但工作还是要去做. (进入正题) ...
- @bzoj - 4356@ Ceoi2014 Wall
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给出一个N*M的网格图,有一些方格里面存在城市,其中首都位于网格 ...
- Java8 Date与LocalDate互转
Java8 日期时间API,新增了LocalDate.LocalDateTime.LocalTime等线程安全类,接下来要说的是LocalDate与java.util.Date之间的转换. 1.Loc ...
- OpenStack☞HTTP协议
前言 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准 HTTP是一个基于TCP/IP通信协议 ...
- EC round 33 D. Credit Card 贪心
因为到为0的点,充钱的范围都是不确定的,我们维护一个满足条件的最小值以及满足条件的最大值. 当min>d时,代表已经满足条件限制了 当a[ i ] = 0 并且 max<0,代表需要充钱, ...
- 2016 年度开源中国新增开源软件排行榜 TOP 100
2016 年度开源中国新增开源软件排行榜 TOP 100 2016 年度开源中国新增开源软件排行榜 TOP 100 新鲜出炉!本榜单根据 2016 年开源中国新收录的 3030 款软件的关注度和活跃度 ...
- ORACLE内部操作
当执行查询时,ORACLE采用了内部的操作. 下表显示了几种重要的内部操作. ORACLE Clause 内部操作 ORDER BY SORT ORDER BY UNION UNION-ALL MIN ...
- 在Linux/Unix上运行SuperSocket
SuperSocket通过(Mono 2.10或更新版本)来实现跨平台的特性 由于Unix/Linux不同于Windows上的文件路径格式,SuperSocket提供了专用于Unix/Linux系统上 ...
- H3C ISDN网络构成
- [转][ASP.NET Core 3框架揭秘] 跨平台开发体验: Windows [下篇]
由于ASP.NET Core框架在本质上就是由服务器和中间件构建的消息处理管道,所以在它上面构建的应用开发框架都是建立在某种类型的中间件上,整个ASP.NET Core MVC开发框架就是建立在用来实 ...