二分+最短路算法

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define maxn 100010
using namespace std;
const int INF = 0x3f3f3f3f;
struct Node {
int p;
int len;
Node(int a, int b) :p(a), len(b) {}
};
vector<Node>G[maxn];
void insert(int be, int en, int len) {
G[be].push_back(Node(en, len));
}
bool operator <(const Node a, const Node b) {
return a.len > b.len;
}
int vis[maxn];
int dis[maxn];
int n, m, k;
int dijstra(int be, int range) {
memset(vis, 0, sizeof(vis));
memset(dis, INF, sizeof(dis));
priority_queue<Node>que;
que.push(Node(be, 0));
dis[be] = 0;
while (!que.empty()) {
Node ans = que.top();
que.pop();
if (vis[ans.p]) continue;
vis[ans.p] = 1;
int x = ans.p;
for (int i = 0; i < G[x].size(); i++) {
int p = G[x][i].p;
int len;
if (G[x][i].len >= range) len = 1;
else len = 0; if (dis[p] > dis[x] + len) {
dis[p] = dis[x] + len;
que.push(Node(p, dis[p]));
}
}
}
return dis[n];
}
int check(int mid) {
int len = dijstra(1, mid);
if (len >= k + 1) return 0;
else return 1;
}
int main() {
int be, en, len;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &be, &en, &len);
insert(be, en, len);
insert(en, be, len);
}
int l = 0;
int r = 10000000;
int mid;
int flag = 0; while (r - l > 1) {
mid = (r + l) / 2;
if (check(mid)) {//往小了压
r = mid;
}
else {
l = mid ;
}
}
if (r == 10000000) cout << "-1" << endl;
else cout << l << endl;
return 0;
}

  

在加权无向图上求出一条从1号结点到N号结点的路径,使路径上第K+1大的边权尽量小的更多相关文章

  1. c编程:求出4&#215;4矩阵中最大和最小元素值及其所在行下标和列下标,求出两条主对角线元素之和。

    //求出4×4矩阵中最大和最小元素值及其所在行下标和列下标,求出两条主对角线元素之和 #include <stdio.h> int main() { int sum=0; int max, ...

  2. tomcat服务器用Servlet类查找磁盘文件上的Json信息,如果匹配则在浏览器上显示出该条内容的全部信息

    package com.swift; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOE ...

  3. Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)

    上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...

  4. atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7

    atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7 1. 实现原理 1 2. 大的文件上传原理::使用applet 1 3. 新的bp 2 1. 性能提升---分割小文件上传 ...

  5. 对于给定的整数集合S,求出最大的d,使得a+b+c=d。

    对于给定的整数集合S,求出最大的d,使得a+b+c=d.a,b,c,d互不相同,且都属于S.集合的元素个数小于等于2000个,元素的取值范围在[-2^28,2^28 - 1],假定可用内存空间为100 ...

  6. winform 根据两点求出线上所有点及画出这条线

    找出所有点: 根据斜率按照一个方向递增,求出对应的另一个方向的整数值. Point pStart = new Point(0, 2); Point pEnd = new Point(8, 2); // ...

  7. hdu 1595 find the longest of the shortest【最短路枚举删边求删除每条边后的最短路,并从这些最短路中找出最长的那条】

    find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  8. 最短路径(给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。)

    给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 例: 输入: [ [1,3,1], [1,5,1], [ ...

  9. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

随机推荐

  1. 基于颜色的R2V软件快速矢量化

    跟同学一起做SRTP,矢量化,作图的工作点名让我去做,人家说,谁让你是学地理信息的呢?哎,什么时候地理信息不再被别人当成制图画图的,我们专业就有希望了. 话虽然这么说,但工作还是要去做. (进入正题) ...

  2. @bzoj - 4356@ Ceoi2014 Wall

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给出一个N*M的网格图,有一些方格里面存在城市,其中首都位于网格 ...

  3. Java8 Date与LocalDate互转

    Java8 日期时间API,新增了LocalDate.LocalDateTime.LocalTime等线程安全类,接下来要说的是LocalDate与java.util.Date之间的转换. 1.Loc ...

  4. OpenStack☞HTTP协议

    前言 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准 HTTP是一个基于TCP/IP通信协议 ...

  5. EC round 33 D. Credit Card 贪心

    因为到为0的点,充钱的范围都是不确定的,我们维护一个满足条件的最小值以及满足条件的最大值. 当min>d时,代表已经满足条件限制了 当a[ i ] = 0 并且 max<0,代表需要充钱, ...

  6. 2016 年度开源中国新增开源软件排行榜 TOP 100

    2016 年度开源中国新增开源软件排行榜 TOP 100 2016 年度开源中国新增开源软件排行榜 TOP 100 新鲜出炉!本榜单根据 2016 年开源中国新收录的 3030 款软件的关注度和活跃度 ...

  7. ORACLE内部操作

    当执行查询时,ORACLE采用了内部的操作. 下表显示了几种重要的内部操作. ORACLE Clause 内部操作 ORDER BY SORT ORDER BY UNION UNION-ALL MIN ...

  8. 在Linux/Unix上运行SuperSocket

    SuperSocket通过(Mono 2.10或更新版本)来实现跨平台的特性 由于Unix/Linux不同于Windows上的文件路径格式,SuperSocket提供了专用于Unix/Linux系统上 ...

  9. H3C ISDN网络构成

  10. [转][ASP.NET Core 3框架揭秘] 跨平台开发体验: Windows [下篇]

    由于ASP.NET Core框架在本质上就是由服务器和中间件构建的消息处理管道,所以在它上面构建的应用开发框架都是建立在某种类型的中间件上,整个ASP.NET Core MVC开发框架就是建立在用来实 ...