本节,我们来探讨一个特殊的概念,线程本地变量,在Java中的实现是类ThreadLocal,它是什么?有什么用?实现原理是什么?让我们接下来逐步探讨。

基本概念和用法

线程本地变量是说,每个线程都有同一个变量的独有拷贝,这个概念听上去比较难以理解,我们先直接来看类TheadLocal的用法。

ThreadLocal是一个泛型类,接受一个类型参数T,它只有一个空的构造方法,有两个主要的public方法:

public T get()
public void set(T value)

set就是设置值,get就是获取值,如果没有值,返回null,看上去,ThreadLocal就是一个单一对象的容器,比如:

public static void main(String[] args) {
ThreadLocal<Integer> local = new ThreadLocal<>();
local.set(100);
System.out.println(local.get());
}

输出为100。

那ThreadLocal有什么特殊的呢?特殊发生在有多个线程的时候,看个例子:

public class ThreadLocalBasic {
static ThreadLocal<Integer> local = new ThreadLocal<>(); public static void main(String[] args) throws InterruptedException {
Thread child = new Thread() {
@Override
public void run() {
System.out.println("child thread initial: " + local.get());
local.set(200);
System.out.println("child thread final: " + local.get());
}
};
local.set(100);
child.start();
child.join();
System.out.println("main thread final: " + local.get());
}
}

local是一个静态变量,main方法创建了一个子线程child,main和child都访问了local,程序的输出为:

child thread initial: null
child thread final: 200
main thread final: 100

这说明,main线程对local变量的设置对child线程不起作用,child线程对local变量的改变也不会影响main线程,它们访问的虽然是同一个变量local,但每个线程都有自己的独立的值,这就是线程本地变量的含义。

除了get/set,ThreadLocal还有两个方法:

protected T initialValue()
public void remove()

initialValue用于提供初始值,它是一个受保护方法,可以通过匿名内部类的方式提供,当调用get方法时,如果之前没有设置过,会调用该方法获取初始值,默认实现是返回null。remove删掉当前线程对应的值,如果删掉后,再次调用get,会再调用initialValue获取初始值。看个简单的例子:

public class ThreadLocalInit {
static ThreadLocal<Integer> local = new ThreadLocal<Integer>(){ @Override
protected Integer initialValue() {
return 100;
}
}; public static void main(String[] args) {
System.out.println(local.get());
local.set(200);
local.remove();
System.out.println(local.get());
}
}

输出值都是100。

使用场景

ThreadLocal有什么用呢?我们来看几个例子。

DateFormat/SimpleDateFormat

ThreadLocal是实现线程安全的一种方案,比如对于DateFormat/SimpleDateFormat,我们在32节介绍过日期和时间操作,提到它们是非线程安全的,实现安全的一种方式是使用锁,另一种方式是每次都创建一个新的对象,更好的方式就是使用ThreadLocal,每个线程使用自己的DateFormat,就不存在安全问题了,在线程的整个使用过程中,只需要创建一次,又避免了频繁创建的开销,示例代码如下:

public class ThreadLocalDateFormat {
static ThreadLocal<DateFormat> sdf = new ThreadLocal<DateFormat>() { @Override
protected DateFormat initialValue() {
return new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
}
}; public static String date2String(Date date) {
return sdf.get().format(date);
} public static Date string2Date(String str) throws ParseException {
return sdf.get().parse(str);
}
}

需要说明的是,ThreadLocal对象一般都定义为static,以便于引用。

ThreadLocalRandom

即使对象是线程安全的,使用ThreadLocal也可以减少竞争,比如,我们在34节介绍过Random类,Random是线程安全的,但如果并发访问竞争激烈的话,性能会下降,所以Java并发包提供了类ThreadLocalRandom,它是Random的子类,利用了ThreadLocal,它没有public的构造方法,通过静态方法current获取对象,比如:

public static void main(String[] args) {
ThreadLocalRandom rnd = ThreadLocalRandom.current();
System.out.println(rnd.nextInt());
}

current方法的实现为:

public static ThreadLocalRandom current() {
return localRandom.get();
}

localRandom就是一个ThreadLocal变量:

private static final ThreadLocal<ThreadLocalRandom> localRandom =
new ThreadLocal<ThreadLocalRandom>() {
protected ThreadLocalRandom initialValue() {
return new ThreadLocalRandom();
}
};

上下文信息

ThreadLocal的典型用途是提供上下文信息,比如在一个Web服务器中,一个线程执行用户的请求,在执行过程中,很多代码都会访问一些共同的信息,比如请求信息、用户身份信息、数据库连接、当前事务等,它们是线程执行过程中的全局信息,如果作为参数在不同代码间传递,代码会很啰嗦,这时,使用ThreadLocal就很方便,所以它被用于各种框架如Spring中,我们看个简单的示例:

public class RequestContext {
public static class Request { //...
}; private static ThreadLocal<String> localUserId = new ThreadLocal<>();
private static ThreadLocal<Request> localRequest = new ThreadLocal<>(); public static String getCurrentUserId() {
return localUserId.get();
} public static void setCurrentUserId(String userId) {
localUserId.set(userId);
} public static Request getCurrentRequest() {
return localRequest.get();
} public static void setCurrentRequest(Request request) {
localRequest.set(request);
}
}

在首次获取到信息时,调用set方法如setCurrentRequest/setCurrentUserId进行设置,然后就可以在代码的任意其他地方调用get相关方法进行获取了。

基本实现原理

ThreadLocal是怎么实现的呢?为什么对同一个对象的get/set,每个线程都能有自己独立的值呢?我们直接来看代码。

set方法的代码为:

public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}

它调用了getMap,getMap的代码为:

ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}

返回线程的实例变量threadLocals,它的初始值为null,在null时,set调用createMap初始化,代码为:

void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}

从以上代码可以看出,每个线程都有一个Map,类型为ThreadLocalMap,调用set实际上是在线程自己的Map里设置了一个条目,键为当前的ThreadLocal对象,值为value。ThreadLocalMap是一个内部类,它是专门用于ThreadLocal的,与一般的Map不同,它的键类型为WeakReference<ThreadLocal>,我们没有提过WeakReference,它与Java的垃圾回收机制有关,使用它,便于回收内存,具体我们就不探讨了。

get方法的代码为:

public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null)
return (T)e.value;
}
return setInitialValue();
}

通过线程访问到Map,以ThreadLocal对象为键从Map中获取到条目,取其value,如果Map中没有,调用setInitialValue,其代码为:

private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}

initialValue()就是之前提到的提供初始值的方法,默认实现就是返回null。

remove方法的代码也很直接,如下所示:

public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}

简单总结下,每个线程都有一个Map,对于每个ThreadLocal对象,调用其get/set实际上就是以ThreadLocal对象为键读写当前线程的Map,这样,就实现了每个线程都有自己的独立拷贝的效果。

线程池与ThreadLocal

我们在78节介绍过线程池,我们知道,线程池中的线程是会重用的,如果异步任务使用了ThreadLocal,会出现什么情况呢?可能是意想不到的,我们看个简单的示例:

public class ThreadPoolProblem {
static ThreadLocal<AtomicInteger> sequencer = new ThreadLocal<AtomicInteger>() { @Override
protected AtomicInteger initialValue() {
return new AtomicInteger(0);
}
}; static class Task implements Runnable { @Override
public void run() {
AtomicInteger s = sequencer.get();
int initial = s.getAndIncrement();
// 期望初始为0
System.out.println(initial);
}
} public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(2);
executor.execute(new Task());
executor.execute(new Task());
executor.execute(new Task());
executor.shutdown();
}
}

对于异步任务Task而言,它期望的初始值应该总是0,但运行程序,结果却为:

0
0
1

第三次执行异步任务,结果就不对了,为什么呢?因为线程池中的线程在执行完一个任务,执行下一个任务时,其中的ThreadLocal对象并不会被清空,修改后的值带到了下一个异步任务。那怎么办呢?有几种思路:

  1. 第一次使用ThreadLocal对象时,总是先调用set设置初始值,或者如果ThreaLocal重写了initialValue方法,先调用remove
  2. 使用完ThreadLocal对象后,总是调用其remove方法
  3. 使用自定义的线程池

我们分别来看下,对于第一种,在Task的run方法开始处,添加set或remove代码,如下所示:

static class Task implements Runnable {

    @Override
public void run() {
sequencer.set(new AtomicInteger(0));
//或者 sequencer.remove(); AtomicInteger s = sequencer.get();
//...
}
}

对于第二种,将Task的run方法包裹在try/finally中,并在finally语句中调用remove,如下所示:

static class Task implements Runnable {

    @Override
public void run() {
try{
AtomicInteger s = sequencer.get();
int initial = s.getAndIncrement();
// 期望初始为0
System.out.println(initial);
}finally{
sequencer.remove();
}
}
}

以上两种方法都比较麻烦,需要更改所有异步任务的代码,另一种方法是扩展线程池ThreadPoolExecutor,它有一个可以扩展的方法:

protected void beforeExecute(Thread t, Runnable r) { }

在线程池将任务r交给线程t执行之前,会在线程t中先执行beforeExecure,可以在这个方法中重新初始化ThreadLocal。如果知道所有需要初始化的ThreadLocal变量,可以显式初始化,如果不知道,也可以通过反射,重置所有ThreadLocal,反射的细节我们会在后续章节进一步介绍。

我们创建一个自定义的线程池MyThreadPool,示例代码如下:

static class MyThreadPool extends ThreadPoolExecutor {
public MyThreadPool(int corePoolSize, int maximumPoolSize,
long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
} @Override
protected void beforeExecute(Thread t, Runnable r) {
try {
//使用反射清空所有ThreadLocal
Field f = t.getClass().getDeclaredField("threadLocals");
f.setAccessible(true);
f.set(t, null);
} catch (Exception e) {
e.printStackTrace();
}
super.beforeExecute(t, r);
}
}

这里,使用反射,找到线程中存储ThreadLocal对象的Map变量threadLocals,重置为null。使用MyThreadPool的示例代码如下:

public static void main(String[] args) {
ExecutorService executor = new MyThreadPool(2, 2, 0,
TimeUnit.MINUTES, new LinkedBlockingQueue<Runnable>());
executor.execute(new Task());
executor.execute(new Task());
executor.execute(new Task());
executor.shutdown();
}

使用以上介绍的任意一种解决方案,结果就符合期望了。

小结

本节介绍了ThreadLocal的基本概念、用法用途、实现原理、以及和线程池结合使用时的注意事项,简单总结来说:

  • ThreadLocal使得每个线程对同一个变量有自己的独立拷贝,是实现线程安全、减少竞争的一种方案。
  • ThreadLocal经常用于存储上下文信息,避免在不同代码间来回传递,简化代码。
  • 每个线程都有一个Map,调用ThreadLocal对象的get/set实际就是以ThreadLocal对象为键读写当前线程的该Map。
  • 在线程池中使用ThreadLocal,需要注意,确保初始值是符合期望的。

从65节到现在,我们一直在探讨并发,至此,基本就结束了,下一节,让我们一起简要回顾总结一下。

【转载】计算机程序的思维逻辑 (82) - 理解ThreadLocal的更多相关文章

  1. 计算机程序的思维逻辑 (82) - 理解ThreadLocal

    本节,我们来探讨一个特殊的概念,线程本地变量,在Java中的实现是类ThreadLocal,它是什么?有什么用?实现原理是什么?让我们接下来逐步探讨. 基本概念和用法 线程本地变量是说,每个线程都有同 ...

  2. Java编程的逻辑 (82) - 理解ThreadLocal

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  3. 计算机程序的思维逻辑 (66) - 理解synchronized

    上节我们提到了多线程共享内存的两个问题,一个是竞态条件,另一个是内存可见性,我们提到,解决这两个问题的一个方案是使用synchronized关键字,本节就来讨论这个关键字. 用法 synchroniz ...

  4. 计算机程序的思维逻辑 (8) - char的真正含义

    看似简单的char 通过前两节,我们应该对字符和文本的编码和乱码有了一个清晰的认识,但前两节都是与编程语言无关的,我们还是不知道怎么在程序中处理字符和文本. 本节讨论在Java中进行字符处理的基础 - ...

  5. 计算机程序的思维逻辑 (29) - 剖析String

    上节介绍了单个字符的封装类Character,本节介绍字符串类.字符串操作大概是计算机程序中最常见的操作了,Java中表示字符串的类是String,本节就来详细介绍String. 字符串的基本使用是比 ...

  6. 计算机程序的思维逻辑 (64) - 常见文件类型处理: 属性文件/CSV/EXCEL/HTML/压缩文件

    对于处理文件,我们介绍了流的方式,57节介绍了字节流,58节介绍了字符流,同时,也介绍了比较底层的操作文件的方式,60节介绍了随机读写文件,61节介绍了内存映射文件,我们也介绍了对象的序列化/反序列化 ...

  7. 【转载】计算机程序的思维逻辑 (8) - char的真正含义

    看似简单的char 通过前两节,我们应该对字符和文本的编码和乱码有了一个清晰的认识,但前两节都是与编程语言无关的,我们还是不知道怎么在程序中处理字符和文本. 本节讨论在Java中进行字符处理的基础 - ...

  8. 计算机程序的思维逻辑 (31) - 剖析Arrays

    数组是存储多个同类型元素的基本数据结构,数组中的元素在内存连续存放,可以通过数组下标直接定位任意元素,相比我们在后续章节介绍的其他容器,效率非常高. 数组操作是计算机程序中的常见基本操作,Java中有 ...

  9. 计算机程序的思维逻辑 (73) - 并发容器 - 写时拷贝的List和Set

    本节以及接下来的几节,我们探讨Java并发包中的容器类.本节先介绍两个简单的类CopyOnWriteArrayList和CopyOnWriteArraySet,讨论它们的用法和实现原理.它们的用法比较 ...

随机推荐

  1. leetcode.769旋转字符串

    给定两个字符串, A 和 B. A 的旋转操作就是将 A 最左边的字符移动到最右边. 例如, 若 A = 'abcde',在移动一次之后结果就是'bcdea' .如果在若干次旋转操作之后,A 能变成B ...

  2. 1077 互评成绩计算 (20 分)C语言

    在浙大的计算机专业课中,经常有互评分组报告这个环节.一个组上台介绍自己的工作,其他组在台下为其表现评分.最后这个组的互评成绩是这样计算的:所有其他组的评分中,去掉一个最高分和一个最低分,剩下的分数取平 ...

  3. Ubuntu 18.04 + ROS Melodic + TurtleBot3仿真

    1. 下载安装包 官网地址: http://wiki.ros.org/action/show/Robots/TurtleBot?action=show&redirect=TurtleBot 所 ...

  4. 如何修改Docker已运行实例的端口映射

    如何修改Docker已运行实例的端口映射 Docker的端口映射,往往出现在两个阶段需要处理: 1.是在docker启动前就已经确定好,哪个docker实例映射哪个端口(往往这个情况比较,需要提前做规 ...

  5. 书写markdown的利器

      最近在用markdown记录一些东西,发现vscode本身对markdown的支持有点单薄,像一些数学公式是没办法及时预览的,而且也没有把markdown文件转换为html和pdf的功能,于是我从 ...

  6. 通过模拟Mybatis动态代理生成Mapper代理类,讲解Mybatis核心原理

    本文将通过模拟Mybatis动态代理生成Mapper代理类,讲解Mybatis原理 1.平常我们是如何使用Mapper的 先写一个简单的UserMapper,它包含一个全表查询的方法,代码如下 pub ...

  7. cogs 2632. [HZOI 2016] 数列操作d

    2632. [HZOI 2016] 数列操作d ★★★   输入文件:segment.in   输出文件:segment.out   简单对比时间限制:3 s   内存限制:512 MB [题目描述] ...

  8. 史上最详细的VMware 安装CentOS 7

    1.点击"创建新的虚拟机": ![file](https://img2018.cnblogs.com/blog/209997/202001/209997-2020011723572 ...

  9. 【Tool】---ubuntu18.04配置oh-my-zsh工具

    作为Linux忠实用户,应该没有人不知道bash shell工具了吧,其实除了bash还有许多其他的工具,zsh就是一款很好得选择,基于zsh shell得基础之上,oh-my-zsh工具更是超级利器 ...

  10. 状态压缩 hdu #10

    You are playing CSGO. There are n Main Weapons and m Secondary Weapons in CSGO. You can only choose ...