传送门

因为骑士只能走"日"字,所以一定是从一个奇点到偶点或偶点到奇点,那么这就是一张二分图,题目要求的其实就是二分图的最大独立集。最大独立集=n-最大匹配。

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std;
const int MAXN = *;
//const int MAXM = 205*205;
const int MAXM = *MAXN; inline int rd(){
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?:;ch=getchar();}
while(isdigit(ch)) {x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
} int xx[]={,,-,-,-,-,,},yy[]={,,,,-,-,-,-};
int n,m,head[MAXN],cnt,vis[MAXN],match[MAXN];
int to[MAXM<<],nxt[MAXM<<],num,ans;
bool ban[][]; inline void add(int bg,int ed){
// cout<<bg<<" "<<ed<<endl;
to[++cnt]=ed,nxt[cnt]=head[bg],head[bg]=cnt;
} inline void bfs(int x,int y){
for(register int i=;i<=;i++){
int ii=xx[i]+x,jj=yy[i]+y;
if(ii< || ii>n || jj< || jj>n || ban[ii][jj]) continue;
add((x-)*n+y,(ii-)*n+jj);
}
} bool dfs(int x){
for(register int i=head[x];i;i=nxt[i]){
int u=to[i];if(vis[u]==num) continue;
vis[u]=num;
if(!match[u] || dfs(match[u])) {match[u]=x;return true;}
}
return false;
} int main(){
n=rd(),m=rd();int x,y;
for(register int i=;i<=m;i++){
x=rd(),y=rd();
ban[x][y]=;
}
for(register int i=;i<=n;i++)
for(register int j=(+((i-)&));j<=n;j+=)
if(!ban[i][j]) bfs(i,j);
for(register int i=;i<=n;i++)
for(register int j=(+((i-)&));j<=n;j+=)
if(!ban[i][j]) num++,ans+=dfs((i-)*n+j);
cout<<(n*n-m)-ans;
return ;
}

LUOGU P3355 骑士共存问题(二分图最大独立集)的更多相关文章

  1. Luogu P3355 骑士共存问题

    题目链接 \(Click\) \(Here\) 二分图最大独立集.对任意两个可以相互攻击的点,我们可以选其中一个.对于不会互相攻击的,可以全部选中.所以我们只需要求出最大匹配,根据定理,二分图最大独立 ...

  2. 洛谷P3355 骑士共存问题 二分图_网络流

    Code: #include<cstdio> #include<cstring> #include<queue> #include<vector> #i ...

  3. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  4. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  5. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

  6. P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图

    展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...

  7. 【Luogu】P3355骑士共存问题(最小割)

    题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...

  8. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  9. 洛谷 [P3355] 骑士共存问题

    二分图求最大独立点集 本问题在二分图中已处理过,此处用dinic写了一遍 #include <iostream> #include <cstdio> #include < ...

随机推荐

  1. CentOS部署软件and so on……

    CentOS各版本系统下载 CentOS下载地址:http://archive.kernel.org/centos-vault/ CentOS安装python3.7.2: 1.安装依赖包 yum in ...

  2. Java & 架构硬核福利,速度上车!

    极客时间福利时间! 最近,栈长每周都会给大家带来极客时间的专栏拼团优惠,给错过优惠的朋友一个再次优惠上车的机会. <从0开始学架构>和<Java核心技术36讲>,这两个专栏很火 ...

  3. 从0的1学习JavaSE,Jdk的安装

    一.常用的dos命令 dir 罗列出当前目录的下所有文件名字 cd 路径 切换路径,该路径可以是相对于路径也可以是绝对路径 相对路径,只相对于当前的目录下的文件 绝对路径,是从盘符开始的路径地址 注意 ...

  4. C#枚举转化示例大全,数字或字符串转枚举

    本文重点举例说明C#枚举的用法,数字转化为枚举.枚举转化为数字及其枚举数值的判断,以下是具体的示例: 先举两个简单的例子,然后再详细的举例说明: 字符串转换成枚举:DayOfWeek week=(Da ...

  5. 【POJ】1321棋盘问题

    题目链接:http://poj.org/problem?id=1321 题意:见题干,很清楚了. 题解:简单dfs,参照八皇后 代码: #include<iostream> #includ ...

  6. vue echarts 给饼图中间添加文字 ,并且添加多个样式

    最近根据设计要求写了一个统计图,以下是设计要求,要求中间文字分别是总数和汉字,样式分别不同 好吧具体的解决方案如下 方案一 series: [ { type:'pie', radius: ['50%' ...

  7. Mybatis 使用Mapper接口的Sql动态代码方式进行CURD和分页查询

    1.Maven的pom.xml 2.配置文件 2.1.db.properties 2.2.mybatis.xml 2.3.log4j.xml 3.MybatisUtil工具类 4.Mapper映射文件 ...

  8. 将数据写到kafka的topic

    package test05 import java.util.Propertiesimport org.apache.kafka.clients.producer.{KafkaProducer, P ...

  9. static/extern&const个人理解

    //const仅仅用来修饰右边的变量(基本数据变量p,指针变量*p) static NSString *const keyA = @"keyA"; static NSString ...

  10. luaj使用 方法签名规则 Cocos2dxLuaJavaBridge

    function AndroidHandler:getParamJson()     local args = {nil}     local ok,ret = luaj.callStaticMeth ...