代码:

%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.1 \n\n');
banner();
%% ------------------------------------------------------------------------ % digital resonator
%r = 0.8
%r = 0.9
r = 0.99
omega0 = pi/4; % corresponding system function Direct form
b0 = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)); % gain parameter
b = [b0 0 0]; % denominator
a = [1 -2*r*cos(omega0) r*r]; % numerator % precise resonant frequency and 3dB bandwidth
omega_r = acos((1+r*r)*cos(omega0)/(2*r));
delta_omega = 2*(1-r);
fprintf('\nResonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f \n', omega_r/pi,delta_omega);
% [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Digital Resonator')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Pole-Zero Plot')
set(gcf,'Color','white');
zplane(b,a);
title(sprintf('Pole-Zero Plot, r=%.2f 0.25\\pi',r));
%pzplotz(b,a); % Impulse Response
fprintf('\n----------------------------------');
fprintf('\nPartial fraction expansion method: \n');
[R, p, c] = residuez(b,a)
MR = (abs(R))' % Residue Magnitude
AR = (angle(R))'/pi % Residue angles in pi units
Mp = (abs(p))' % pole Magnitude
Ap = (angle(p))'/pi % pole angles in pi units
[delta, n] = impseq(0,0,40);
h_chk = filter(b,a,delta); % check sequences %h = 2*0.1281* ( (0.5657*1.414) .^n) .* (cos(pi*n/4) + sin(pi*n/4)); % r=0.8
%h = 2*0.0673* ( (0.6364*1.414) .^n) .* (cos(pi*n/4) + sin(pi*n/4)); % r=0.9
h = 2*0.0070* ( (0.7000*1.414) .^n) .* (cos(pi*n/4) + sin(pi*n/4)); % r=0.99 figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Digital Resonator, h(n) by filter and Inv-Z ')
set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]);
xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]);
xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Digital Resonator, h(n) by Inv-Z ')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]);

  运行结果:

系统函数部分分式展开,

零极点的模和幅角:

用脉冲序列当输入得到脉冲响应序列h_chk(n),系统函数H(z)取逆z变换得h(n),二者如下图

h_chk(n)的幅度谱、相位谱、群延迟

h(n)的幅度谱、相位谱、群延迟

r=0.9、0.99的图这里就不放了。

《DSP using MATLAB》Problem 8.1的更多相关文章

  1. 《DSP using MATLAB》Problem 7.27

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. 《DSP using MATLAB》Problem 7.26

    注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...

  3. 《DSP using MATLAB》Problem 7.25

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  4. 《DSP using MATLAB》Problem 7.24

    又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...

  5. 《DSP using MATLAB》Problem 7.23

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...

  6. 《DSP using MATLAB》Problem 7.16

    使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  7. 《DSP using MATLAB》Problem 7.15

    用Kaiser窗方法设计一个台阶状滤波器. 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  8. 《DSP using MATLAB》Problem 7.14

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  9. 《DSP using MATLAB》Problem 7.13

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  10. 《DSP using MATLAB》Problem 7.12

    阻带衰减50dB,我们选Hamming窗 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

随机推荐

  1. 论文阅读笔记---ShuffleNet V1

    01 ShuffleNet V1要解决什么问题 为算力有限的嵌入式场景下专门设计一个高效的神经网络架构. 02 亮点 使用了两个新的操作:pointwise group convolution和cha ...

  2. springmvc常用知识总结,不定期更新

    1.@Controller 注解到类名上,表示该类是控制器. 2.@RequestMapping("/xxxx") 可以放在类名/方法名之上,表示访问请求该方法时的映射url.如果 ...

  3. linux命令重定向>、>>、 1>、 2>、 1>>、 2>>、 <(转)

    原文章地址:https://www.cnblogs.com/piperck/p/6219330.html >和>>: 他们俩其实唯一的区别就是>是重定向到一个文件,>&g ...

  4. 透彻理解并掌握JavaScript的this

    前言 无论是JavaScript新手还是老手,JavaScript中的this关键词可能都会令你困惑.本文旨在透彻地阐述this.读完本文,就再也不用怕JavaScript中的this了.你将会知道在 ...

  5. Windows taskkill

    TASKKILL [/S system [/U username [/P [password]]]]         { [/FI filter] [/PID processid | /IM imag ...

  6. 阿里云SaaS加速器“宜搭”发布宜搭Plus提升6倍研发效率

    9月26日,在杭州云栖大会上,阿里云SaaS加速器的“底座”——“宜搭”正式发布“宜搭Plus”低代码开发平台.开发复杂企业业务系统所需要的领域数据模型.逻辑&服务编排.专业UI页面设计等,都 ...

  7. 线性dp——cf1096D

    dp[i][j]表示到第i位,与hard的匹配状态到达了第j位 每位有两种决策:消或者不消 分别转移一下即可 转移代码 ;i<n;++i) ;j<=;++j) { cmin(f[i+][j ...

  8. Linux下编译VLC for Android源代码总结

    转:http://blog.chinaunix.net/uid-26611383-id-3678766.html 由于项目需要,需要一个在android平台能够支持RTSP协议的播放器,由于之前没有a ...

  9. js单线程

    由于js是运行在单线程上的,所有浏览器单独开启一个线程来处理事件消息的轮询,避免阻塞js的执行.

  10. 第四篇:java读取Excel简单模板

    场景:对于经常需要导入Excel模板或数据来解析后加以应用的,使用频率非常之高,做了一个比较稳定的版本,体现在这些地方工具:org.apache.poi使用前必须了解这些:1.要解析,那肯定先判断是不 ...