openCV 矩阵(图像)操作函数
有很多函数有mask,代表掩码,如果某位mask是0,那么对应的src的那一位就不计算,mask要和矩阵/ROI/的大小相等。大多数函数支持ROI,如果图像ROI被设置,那么只处理ROI部分
少部分函数支持COI,如果COI设置,只处理感兴趣的通道
矩阵逻辑运算
void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, constCvArr* mask=NULL);//
void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, constCvArr* mask=NULL);//
void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, constCvArr* mask=NULL);//
void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, constCvArr* mask=NULL);//
void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, constCvArr* mask=NULL);//
void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, constCvArr* mask=NULL);//
void cvNot(const CvArr* src,CvArr* dst);//矩阵取反
矩阵算术运算 绝对值
void cvAbs(const CvArr* src,CvArr* dst);
void cvAbsDiff(const CvArr* src1,const CvArr* src2, CvArr*dst);//两矩阵相减取绝对值
void cvAbsDiffS(const CvArr* src, CvArr* dst,CvScalarvalue);//矩阵减去一个数取绝对值
加减
void cvAdd(const CvArr* src1,const CvArr* src2,CvArr* dst,constCvArr* mask = NULL);//两数组相加,dst(I)=src1(I)+src2(I) ifmask(I)!=0
void cvAddS(const CvArr* src,CvScalar value,CvArr*dst,const CvArr*mask = NULL);//数组和一个数相加,dst(I)=src(I)+value ifmask(I)!=0
void cvAddWeighted(const CvArr* src1,double alpha,const CvArr*src2,double beta,double gamma,CvArradded to each sum*dst);//带权相加相当于dst(x,y) =
α ? src1(x,y) +β
? src2(x,y) +γ
void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, constCvArr* mask=NULL);//矩阵减法,dst(I)=src1(I)-src2(I) ifmask(I)!=0
void cvSubS(const CvArr* src, CvScalar value, CvArr* dst, constCvArr* mask=NULL);//矩阵减数,dst(I)=src(I)-value ifmask(I)!=0
void cvSubRS(const CvArr* src, CvScalar value, CvArr* dst, constCvArr* mask=NULL);//数减矩阵,dst(I)=value-src(I) ifmask(I)!=0
乘除
void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, doublescale=1);//scale*src1(i)/src2(i),如果src1=NULL,则计算scale/src2(i)
void cvMul(const CvArr* src1,const CvArr* src2,CvArr* dst,doublescale=1);//两矩阵元素之间的简单乘法,一般的矩阵点乘用cvGEMM();
次方
void cvPow(const CvArr* src, CvArr* dst, doublepower);//为每个src的数求power次方
指数
void cvExp(const CvArr* src, CvArr*dst);//dst(I)=EXP(src(I))
对数
void cvLog(const CvArr* src, CvArr* dst);//
线性代数计算 加&乘
void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr*src2, CvArr* dst);//src1和scale的乘积加上src2
void cvCrossProduct(const CvArr* src1,const CvArr* src2,CvArr*dst);//计算两个3D向量(单通道)的叉乘运算
double cvDotProduct(const CvArr* src1, const CvArr*src2);//两个向量点乘
void cvGEMM(const CvArr* src1, const CvArr* src2, double alpha,const CvArr* src3, double beta, CvArr* dst, inttABC=0);//乘加运算的始祖
由通用乘加函数参与定义的两个具体宏
cvMatMul(const CvArr* src1,const CvArr* src2,CvArr*dst);
cvMatMulAdd(const CvArr* src1,const CvArr* src2,const CvArr*src3,CvArr* dst);
CvScalar cvTrace(const CvArr* mat);//计算对角线上的元素和
变换
void cvTransform(const CvArr* src, CvArr* dst, const CvMat*transmat, const CvMat* shiftvec=NULL);//dst=transmat·
src +shiftvec
void cvPerspectiveTransform(const CvArr* src, CvArr* dst, constCvMat* mat);//把矩阵每个元素中三个通道当做一个矩阵,乘mat,mat是一个3×3或者4×4的转换矩阵
转置
void cvTranspose(const CvArr* src, CvArr*dst);
void cvMulTransposed(const CvArr* src, CvArr* dst, int order, constCvArr* delta=NULL, doublescale=1.0);//(src-delta)乘以它的转置再乘以scale
逆矩阵
double cvInvert(const CvArr* src,CvArr* dst,intmethod=CV_LU);//求原矩阵的逆矩阵,默认使用高斯消去法
方阵可逆的充要条件是|A|!=0
method取值为CV_LU高斯消去法(默认) CV_SVD 奇异值分解SVD CV_SVD_SYM对称矩阵的SVD
行列式
double cvDet(const CvArr* mat);//计算方阵行列式,一定是单通道的
小型方阵直接计算,大型方阵用高斯消去法计算
如果矩阵正定对称,用奇异值分解的方法解决cvSVD();
特征向量特征值
void cvEigenVV(CvArr* mat, CvArr* evects, CvArr* evals, doubleeps=0);//计算对称矩阵的特征值和特征向量,evects输出特征向量,evals输出特征值,eps雅可比方法停止参数
要求三个矩阵都是浮点类型,10×10以下该方法有效,20×20以上的矩阵不能计算出结果,为节约计算量,eps通常设为DBL_EPSILON(10^-15)
如果给定的矩阵是对称正定矩阵,那么考虑使用cvSVD();
协方差
void cvCalcCovarMatrix(const CvArr** vects, int count, CvArr*cov_mat, CvArr* avg, int flags);//给定一组大小和类型相同的向量,向量的个数,计算标记,输出协方差正阵和每个向量的平均值矩阵
CV_COVAR_NORMAL 普通计算协方差和平均值,输出的是n×n的协方差阵
CV_COVAR_SCRAMBLED 快速PCA“Scrambled”协方差,输出的是m×m的协方差阵
CV_COVAR_USE_AVERAGE 平均值是输入的
CV_COVAR_SCALE 重新缩放输出的协方差矩阵
四个flag通过并运算协同发挥作用,前两个不能并
CvSize cvMahalonobis(const CvArr* vec1,const CvArr* vec2,CvArr*mat);
int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, intmethod=CV_LU);//Solves a linear system or least-squaresproblem.
void cvSVD(CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, intflags=0);//Performs singular value decomposition of a realfloating-point matrix.
void cvSVBkSb(const CvArr* W, const CvArr* U, const CvArr* V, constCvArr* B, CvArr* X, int flags);//Performs singular value backsubstitution.
数组比较
void cvCmp(const CvArr* src1, const CvArr* src2, CvArr* dst, intcmp_op);//两矩阵比较运算
CV_CMP_EQ -src1(I) 是否相等
CV_CMP_GT -src1(I) 是否大于
CV_CMP_GE -src1(I) 是否大于等于
CV_CMP_LT -src1(I) 是否小于
CV_CMP_LE -src1(I) 是否小于等于
CV_CMP_NE -src1(I) 是否不等
如果判断为假,dst设为0,如果判断为真,dst设为0xff
void cvCmpS(const CvArr* src, double value, CvArr* dst, intcmp_op);//矩阵和一个数字比较运算
矩阵内转换 类型转换
void cvConvertScale(const CvArr* src,CvArr* dst,double scale,doubleshift);//矩阵首先乘以scale再加上shift,然后把src中的数据类型转换成dst类型,但是src和dst通道数需要相等
void cvConvertScaleAbs(const CvArr* src,CvArr* dst,doublescale,double shift);//在src到dst类型转换前,先做绝对值
void cvCvtColor(const CvArr* src,CvArr* dst, intcode);//图像 颜色空间转换,src要为8U
16U 32F,dst的数据类型需要和src相同,通道数看code
code格式如:CV_原色彩空间2目的色彩空间 色彩空间要考虑RGB的顺序
支持的颜色空间包括:RGB RGB565 RGB555 GRAYRGBA XYZ YCrCb HSV HLS Luv BayerRG
空间转换
void cvFlip(const CvArr* src, CvArr* dst=NULL, intflip_mode=0);//图像绕x、y轴旋转。当用在一维数组上时并且flip_mode>0,可以用来颠倒数据排列
flip_mode=0:左右对称values of the conversionresul
flip_mode>0:上下对称
flip_mode<0:中心对称
矩阵间操作 void cvCopy(const CvArr* src,CvArr*dst,const CvArr* mask=NULL);
void cvMerge(const CvArr* src0,const CvArr* src1,const CvArr*src2,const CvArr* src3,CvArr* dst);//多个数组合并成一个,类型和尺寸都相同,dst有多个通道,src可以赋值NULL
void cvSplit(cosnt CvArr* src,CvArr* dst0,CvArr* dst1,CvArr*dst2,CvArr* dst3);//一个多通道数组分解成多个数组,类型尺寸都想同,dst可以赋值NULL
void cvRepeat(const CvArr* src, CvArr* dst);//在dst中重复叠加src,dst(i,j)=src(i
mod rows(src), j modcols(src))
CvMat* cvReshape(const CvArr* originalarr, CvMat* headerdata, intnew_cn, int new_rows=0);//把一个originalarr(可以是已经有内容的图片),转换为有新的通道数、新的行数的数据(CvMat*只含数据,没有图片头)
CvArr* cvReshapeMatND(const CvArr* arr, int sizeof_header, CvArr*header, int new_cn, int new_dims, int*new_sizes);
void cvLUT(const CvArr* src, CvArr* dst, const CvArr*lut);//src是8bit类型的数据,lut是一张一维查找表,拥有256个通道数类型和dst相同的元素,src的某一位置的元素数值n,到 lut的n位置查找的内容填入dst的相应src的n元素的位置
统计运算 最大最小
void cvMax(const CvArr* src1, const CvArr* src2, CvArr*dst);
void cvMaxS(const CvArr* src, double value, CvArr*dst);//找较大值放到dst中
void cvMin(const CvArr* src1,const CvArr* src2,CvArr*dst);
void cvMins(const CvArr* src,double value,CvArr*dst);//找较小值放到dst中
void cvMinMaxLoc(const CvArr* arr, double* min_val, double*max_val, CvPoint* min_loc=NULL, CvPoint* max_loc=NULL, const CvArr*mask=NULL);
找出全局某个通道中最大最小的值,和她们的位置,如果不止一个通道,一定要设置COI
零的个数
int cvCountNonZero( const CvArr* arr );//统计非零的个数
是否落在范围内
void cvInRange(const CvArr* src,const CvArr* lower,const CvArr*upper,CvArr* dst);
void cvInRangeS(const CvArr* src,CvScalar lower,CvScalarupper,CvArr* dst);//判断原数组中的每个数大小是否落在对应的lower、upper数组位置数值的中间
if(lower(i)<=src(i)
平均值标准差
CvScalar cvAvg(const CvArr* arr,const CvArr* mask =NULL);//计算mask非零位置的所有元素的平均值,如果是图片,则单独计算每个通道上的平均值,如果COI设置了,只计算该COI通道的平均值
void cvAvgSdv(const CvArr* arr, CvScalar* mean, CvScalar* std_dev,const CvArr* mask=NULL);//计算各通道的平均值,标准差,支持COI
doublecvNorm(const CvArr* arr1,const CvArr* arr2=NULL,intnorm_type=CV_L2,const CvArr* mask=NULL);//计算一个数组的各种范数
如果arr2为NULL,norm_type为
CV_C 求所有数取绝对值后的最大值,CV_L1 求所有数的绝对值的和,CV_L2求所有数的平方和的平方根
如果arr2不为NULL,norm_type为
CV_C arr1和arr2对应元素差的绝对值中的最大值 CV_L1 arr1和arr2对应元素差的绝对值的和 CV_L2
arr1和arr2的差平方和的平方根
CV_RELATIVE_C CV_RELATIVE_L1 CV_RELATIVE_L2 上面结果除以cvNorm(arr2,NULL,对应的norm_type);
cvNormalize(const CvArr* src,CvArr* dst,double a=1.0,doubleb=0.0,int norm_type=CV_L2,const CvArr*mask=NULL);
CV_C CV_L1 CV_L2 CV_MINMAX
cvReduce(const CvArr* src,CvArr* dst,int dim,intop=CV_REDUCE_SUM);//根据一定规则,把矩阵约简为向量
dim 决定约简到行还是列 1:约简到单个列,0:约简到单个行,-1:根据dst的CvSize,决定约简到行还是列
op 决定按什么规则约简
CV_REDUCE_SUM - 行/列的和
CV_REDUCE_AVG- 行/列平均值
CV_REDUCE_MAX - 行/列中最大值
CV_REDUCE_MIN- 行/列中最小值
取得设置数组信息 得到指定行列
CvMat* cvGetCol(const CvArr* arr,CvMat* submat,intcol);
CvMat* cvGetCols(const CvArr* arr,CvMat* submat,int start_col,intend_col);//取目标矩阵的某列/连续几列,submat和返回值的实际数据还是在原矩阵中,只是修改了头部和数据指针,没有数据拷贝
CvMat* cvGetRow(const CvArr* arr,CvMat* submat,introw);
CvMat* cvGetRows(const CvArr* arr,CvMat* submat,int start_row,intend_row);
得到对角线
CvMat* cvGetDiag(const CvArr* arr,CvMat* submat,intdiag=0);//取矩阵arr的对角线,结果放在向量中,并不要求原矩阵是方阵,diag表示从哪个位置开始取对角线
维度大小
int cvGetDims(const CvArr* arr,int*sizes=NULL);//获取数组的维数和每一维的大小,sizes十一个数组的头指针。图像或者矩阵的维数一定是2,先行数后列数
int cvGetDimSize(const CvArr* arr,int index);//获取某一维的大小
矩阵大小
CvSize cvGetSize(const CvArr* arr);//返回矩阵和图像的大小。小的结构体一般都是直接返回值而不是重新分配指针,分配指针的效率可能比直接返回值效率更低
截取矩形矩阵
CvMat* cvGetSubRect(const CvArr* arr, CvMat* submat, CvRectrect);//从输入的数组中根据输入的矩形截取一块数组中的矩形,返回的CvMat*就是submat
得到和设置元素 因为效率原因,实际很少会直接用到这些方法,而是根据实际的应用来决定如何操作每一个数
uchar* cvPtr1D(CvArr* arr,int idx0,int* type);//得到的是指针,所以可以修改,比下面的效率更高
uchar* cvPtr2D(CvArr* arr,int idx0,int idx1,int*type);
uchar* cvPtr3D(CvArr* arr,int idx0,int idx1,int idx2,int*type);
uchar* cvPtrND(CvArr* arr,int* idx,int* type,intcreate_node=1,unsigned* precalc_hashval=NULL);//int*idx是一个数组指针,里面保存着索引
double cvGetReal1D(const CvArr* arr,int idx0);//得到的是具体值
double cvGetReal2D(const CvArr* arr,int idx0,intidx1);
double cvGetReal3D(const CvArr* arr,int idx0,int idx1,intidx2);
double cvGetRealND(const CvArr* arr,int*idx);
CvScalar cvGet1D(const CvArr* arr,intidx0);
CvScalar cvGet2D(const CvArr* arr,int idx0,intidx1);
CvScalar cvGet3D(const CvArr* arr,int idx0,int idx1,intidx2);
CvScalar cvGetND(const CvArr* arr,int*idx);
double cvmGet(const CvMat* mat, int row, intcol);//仅仅用于矩阵单通道浮点数的获取,由于是inline并且没有类型判断,所以效率比较高
void cvSetReal1D(CvArr* arr, int idx0, doublevalue);
void cvSetReal2D(CvArr* arr, int idx0, int idx1, doublevalue);
void cvSetReal3D(CvArr* arr, int idx0, int idx1, int idx2, doublevalue);
void cvSetRealND(CvArr* arr, int* idx, doublevalue);
void cvSet1D(CvArr* arr, int idx0, CvScalarvalue);
void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalarvalue);
void cvSet3D(CvArr* arr, int idx0, int idx1, int idx2, CvScalarvalue);
void cvSetND(CvArr* arr, int* idx, CvScalarvalue);
void cvmSet(CvMat* mat, int row, int col, doublevalue);//仅仅用于设置单通道浮点类型的矩阵
void cvClearND(CvArr* arr, int* idx);//把多维数组的某位置设置为0
void cvSet(CvArr* arr, CvScalar value, const CvArr*mask=NULL);//把数组每个元素都设为value
void cvSetZero(CvArr* arr);//对普通矩阵,每位都设为0;对稀疏矩阵,删除所以元素
一般算数运算 int cvRound(double value ); int cvFloor(double value ); int cvCeil( double value);//求和double最(上/下)接近的整数
float cvSqrt(float value);//求平方根
float cvInvSqrt(float value);//求平方根倒数
float cvCbrt(float value);//求立方根
float cvCbrt(float value);//求两个向量的夹角
int cvIsNaN(double value);//判断是否是合法数
int cvIsInf(double value);//判断是否无穷
void cvCartToPolar(const CvArr* x, const CvArr* y, CvArr*magnitude, CvArr* angle=NULL, intangle_in_degrees=0);//
void cvPolarToCart(const CvArr* magnitude, const CvArr* angle,CvArr* x, CvArr* y, intangle_in_degrees=0);//
void cvSolveCubic(const CvArr* coeffs, CvArr*roots);//求三次方方程解,coeffs作为三次方程的系数,可以是三元(三次方系数为1)或者四元
随机数生成 CvRNG cvRNG(int64seed=-1);//生成随机数生成器
unsigned cvRandInt(CvRNG* rng);
double cvRandReal(CvRNG* rng);
void cvRandArr(CvRNG* rng, CvArr* arr, int dist_type, CvScalarparam1, CvScalar param2);//
dist_type决定生成随机数组中的分布 CV_RAND_UNI均匀分布 CV_RAND_NORMAL正态/高斯分布
param1:均匀分布中的下界(包含),正态分布中的平均值
param2:均匀分布中的上界(不包含),正态分布中的偏差
分布转换
void cvDFT(const CvArr* src, CvArr* dst, int flags, intnonzero_rows=0);
int cvGetOptimalDFTSize(int size0);
void cvMulSpectrums(const CvArr* src1, const CvArr* src2, CvArr*dst, int flags);
void cvDCT(const CvArr* src, CvArr* dst, int flags);
openCV 矩阵(图像)操作函数的更多相关文章
- python进阶—OpenCV之常用图像操作函数说明(转)
文章目录cv2.thresholdcv2.bitwise_andcv2.bitwise_orcv2.bitwise_notcv2.inRangecv2.resizecv2.adaptiveThresh ...
- [opencv]常用阵列操作函数总结
/*=========================================================================*/ // 阵列操作 /*============ ...
- opencv基本图像操作
// Basic_OpenCV_2.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #i ...
- openCV - 4. 图像操作
读写图像.读写像素.修改像素值 读写图像 imread 可以指定加载为灰度或者RGB图像 Imwrite 保存图像文件,类型由扩展名决定 读写像素 读一个GRAY像素点的像素值(CV_8UC1) Sc ...
- OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...
- Opencv图像与矩阵的操作
#include "stdafx.h" #include <cv.h> #include <cxcore.h> #include <highgui.h ...
- Opencv中图像的遍历与像素操作
Opencv中图像的遍历与像素操作 OpenCV中表示图像的数据结构是cv::Mat,Mat对象本质上是一个由数值组成的矩阵.矩阵的每一个元素代表一个像素,对于灰度图像,像素是由8位无符号数来表示(0 ...
- opencv 矩阵操作
OpenCv矩阵操作 有很多函数有mask,代表掩码,如果某位mask是0,那么对应的src的那一位就不计算,mask要和矩阵/ROI/的大小相等 大多数函数支持ROI,如果图像ROI被设置,那么只处 ...
- OpenCV图像处理篇之阈值操作函数
阈值操作类型 这5种阈值操作类型保留opencv tutorials中的英文名称.依次为: Threshold Binary:即二值化,将大于阈值的灰度值设为最大灰度值.小于阈值的值设为0. Thre ...
随机推荐
- Java A*算法搜索无向图最短路径
网上看了很多别人写的A*算法,都是针对栅格数据进行处理,每次向外扩展都是直接八方向或者四方向,这样利于理解.每次移动当前点,gCost也可以直接设置成横向10斜向14. 但是当我想处理一个连续的数据集 ...
- <selenium>selenium基础操作
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.c ...
- python语句结构(while循环)
while循环 pythhon中while语句的一般形式 while 判断语句: 执行语句 i=0 sum=0 while i<=100: sum+=i i=i+1 print(sum) #运行 ...
- 【BZOJ3944】Sum
题面 Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1, ...
- 提高Modelsim仿真速度的方法(1) -- force
假如主驱动时钟频率很高,因为要一个周期输出,仿真时间过长,仿真速度慢是自然. 但是仿真中,并不是每个驱动周期都是必要的,这时可以使用force命令把想要的信号提前制造出来. 事实上,对于使用到PLL的 ...
- 流程控制&&函数
1.if 条件语句 if 判断条件: 执行语句…… elif 判断条件: 执行语句…… else: 执行语句…… 2.for 循环 ''' for 后跟变量名,in 后跟序列,注意加冒号 for 循环 ...
- TF坐标变换
一.什么是TF 二.TF使用方法 三.TF包内的指令工具 四.相关API 1.广播变换发布坐标之间的坐标关系 #include <ros/ros.h> #include <tf ...
- 微信H5支付签名校验错误
参数一定按照我得顺序写,这样可以不用排序,签名在图二. H5支付最坑的一点就是文档坑爹!!!文档中有一个场景信息字段写的是必填,实际上是不需要的!!因为这个字段找了一下午bug,用签名校验工具是成功的 ...
- React中的Ajax
React中的Ajax 组件的数据来源,通常是通过Ajax请求从服务器获取,可以使用componentDidMount方法设置Ajax请求,等到请求成功,再用this.setState方法重新渲染UI ...
- SPSS超详细操作:分层回归(hierarchical multiple regression)
SPSS超详细操作:分层回归(hierarchical multiple regression) 1.问题与数据 最大携氧能力(maximal aerobic capacity, VO2max)是评价 ...