最长递增子序列nlogn的做法
费了好大劲写完的 用线段树维护的 nlogn的做法
再看了一下 大神们写的 nlogn 额差的好远
我写的又多又慢 大神们写的又少又快
时间 空间 代码量 哪个都赶不上大佬们的代码
//这是我写的
#include<iostream>
#include<stdio.h>
#include<map>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = ;
int a[maxn];
int val[maxn<<];
vector<int>v;
int getid(int x){
return lower_bound(v.begin(),v.end(),x)-v.begin()+;
}
int query(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R)return val[rt];
int m=(l+r)>>;int t=;
if(L<=m)t=max(t,query(L,R,l,m,rt<<));
if(R>m)t=max(t,query(L,R,m+,r,rt<<|));
return t;
}
void update(int x,int l,int r,int rt,int vv){
if(l==r){
val[rt]=vv;
}else{
int m=(l+r)>>;
if(x<=m)update(x,l,m,rt<<,vv);
else update(x,m+,r,rt<<|,vv);
val[rt]=max(val[rt<<],val[rt<<|]);
}
}
int main()
{
int n,ans=;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",a+i);
v.push_back(a[i]);
}
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
for(int i=;i<=n;i++){
int t=getid(a[i]);
int vv=query(,t,,v.size(),)+;
ans=max(ans,vv);
update(t,,v.size(),,vv);
}
printf("%d\n",ans);
return ;
}
//这是大神们的
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<cmath>
using namespace std;
typedef __int64 ll;
#define maxn 50050
ll a[maxn],dp[maxn];
int main(){
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%I64d",&a[i]),dp[i]=;
int len=;
for(int i=;i<=n;i++){
if(i==){
dp[++len]=a[i];
}
else{
if(a[i]>dp[len]){
dp[++len]=a[i];
}
else{
int pos=lower_bound(dp+,dp+len+,a[i])-dp;
dp[pos]=a[i];
}
}
}
printf("%d\n",len);
}
最长递增子序列nlogn的做法的更多相关文章
- HDU-1160-FatMouse's Speed(DP, 最长递增子序列)
链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现
关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...
- 51nod-1134 最长递增子序列,用线段树将N^2的dp降到NlogN
题目链接 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行 ...
- 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...
- POJ2533 最长递增子序列
描述: 7 1 7 3 5 9 4 8 输出4 最长递增子序列为1 3 5 9,不必连续. 解法: 三种思路: 转化为最长公共子序列(n^2),动态规划(n^2),不知叫什么解法(nlogn). 解法 ...
- LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列LIS再谈
DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...
随机推荐
- WPF常规表单验证
1:ViewModel 实现验证接口 IDataErrorInfo 2:实现接口的相关验证逻辑,并把错误信息反馈给 Error public string this[string columnName ...
- 4.Jmeter 快速入门教程(三-2) -- 设置集结点
集合点:简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念,我们可以在需要压力的地方设置集合点, 还拿那个用户和密码的地方,每到输入用户 ...
- Django框架(十五)—— forms组件、局部钩子、全局钩子
目录 forms组件.局部钩子.全局钩子 一.什么是forms组件 二.forms组件的使用 1.使用语法 2.组件的参数 3.注意点 三.渲染模板 四.渲染错误信息 五.局部钩子 1.什么是局部钩子 ...
- UVA11988_Broken Keyboard (a.k.a. Beiju Text)
即将dfs()放到打印本段字符的后面 不过汝佳书上面说是用链表写的,无意中用递归写出来了,而且写的挺简单的,代码不复杂,写这个博客主要是想记住递归这种神奇的方法 平时递归搜索时候,dfs()的在其他代 ...
- Django Paginator分页器
如何实现在django中实现分页效果,我使用的是django自带的分页器paginator具体是使用办法是这样的首先引用from django.core.paginator import Pagina ...
- Sqlplus常用指令
一.ORACLE的启动和关闭1.在单机环境下2.在双机环境下二.Oracle数据库有哪几种启动方式1.startup nomount 非安装启动,这种方式启动下可执行:重建控制文件.重建数据库2.st ...
- lg5169 xtq的异或和
题目 根据一些众所周知的结论,我们先跑一棵生成树出来,之后把所有简单环都搞出来,那么\(u\)到\(v\)的路径一定可以由树上的路径和一些简单环拼起来得到 把所有简单环都插到一个线性基里,之后dfs一 ...
- 初探remoting双向通信(一)
原 初探remoting双向通信(一) 2013年06月24日 15:47:07 喜欢特别冷的冬天下着雪 阅读数 4389 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...
- 后端大佬给我配置的deploy serves文件以便学习
serves apiVersion: v1 kind: Service metadata: labels: com.wise2c.service: ui-ll-2 com.wise2c.stack: ...
- JS提示信息来检测相应id的标签
2015-07~2015-08 (其中$为document.getElementById()) 使用span提示信息来检测相应id的标签,没有返回值 infoTips("LRYH" ...