洛谷$P5444\ [APIO2019]$奇怪装置 数论
正解:数论
解题报告:
我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$
考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$QwQ$?
那就有$\begin{cases}t_1+[\frac{t_1}{B}]\equiv t_2+[\frac{t_2}{B}](\mod A)\\t_1\equiv t_2(\mod B)\end{cases}$.
不妨设$t_2=t_1+B\cdot t$,代入得$t_1+[\frac{t_1}{B}]\equiv t_1+B\cdot k+[\frac{t_1+B\cdot k}{B}](\mod A)$,即$k(B+1)\equiv 0(\mod A)$
解得$\frac{A}{gcd(A,B+1)}|k$.即将$mod\ B$相等的提出来,发现每$\frac{A}{gcd(A,B+1)}$一循环.又因为$mod\ B$的结果有$B$个,所以总的循环节长度为$len=\frac{A\cdot B}{gcd(A,B+1)}$.
所以把$l,r$取模后变成若干条线段,然后现在询问$[0,len)$覆盖了多少个点.昂这个不差分下就行了嘛,$over$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define fi first
#define sc second
#define ll long long
#define gc getchar()
#define mp make_pair
#define P pair<ll,ll>
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ll i=x;i<=y;++i)
#define my(i,x,y) for(ll i=x;i>=y;--i) const int N=1e6+;
const ll inf=1e18;
ll n,A,B,len,l[N],r[N],sum,dat,lst,as;
multiset<P>S; il ll read()
{
rc ch=gc;ll x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
il void ad(ll x,ll y){S.insert(mp(x,-));S.insert(mp(y,));} int main()
{
//freopen("5444.in","r",stdin);freopen("5444.out","w",stdout);
n=read();A=read();B=read();len=A/gcd(A,B+)*B;rp(i,,n){l[i]=read(),r[i]=read();sum+=r[i]-l[i]+;}
if(A/gcd(A,B+)>inf/B)return printf("%lld\n",sum),;
rp(i,,n)
{
if(r[i]-l[i]>=len)return printf("%lld\n",len),;;//printf("l=%lld r=%lld len=%lld\n",r[i],l[i],len);
if(l[i]/len!=r[i]/len)ad(l[i]%len,len-),ad(,r[i]%len);else ad(l[i]%len,r[i]%len);
}
multiset<P>::iterator it=S.begin();
while(it!=S.end()){P tmp=*it;if(!dat)lst=tmp.fi;dat-=tmp.sc;if(!dat)as+=tmp.fi-lst+;++it;}
printf("%lld\n",as);
return ;
}
洛谷$P5444\ [APIO2019]$奇怪装置 数论的更多相关文章
- Luogu P5444 [APIO2019]奇怪装置
题目 这种题目看上去就是有循环节的对吧. 在考场上,一个可行的方式是打表. 现在我们手推一下这个循环节. 记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\% ...
- P5444 [APIO2019]奇怪装置
传送门 考虑求出最小的循环节 $G$ 使得 $t,t+G$ 得到的数对是一样的 由 $y \equiv t \mod B$ ,得到 $G$ 一定是 $B$ 的倍数,设 $zB=G$,则 $t,t+zB ...
- 【LOJ#3144】[APIO2019]奇怪装置(数论)
[LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...
- 【LG5444】[APIO2019]奇怪装置
[LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- [APIO 2010] [LOJ 3144] 奇怪装置 (数学)
[APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...
- 洛谷P4495 [HAOI2018]奇怪的背包(数论)
题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\ ...
- [APIO2019T1]奇怪装置
考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...
- 洛谷 P1135 【奇怪的电梯】
题库 :洛谷 题号 :1135 题目 :奇怪的电梯 link :https://www.luogu.org/problemnew/show/P1135 一. 动态规划 : 思路 :这道题用动规来解决其 ...
随机推荐
- 选用适合的ORACLE优化器
ORACLE的优化器共有3种: a. RULE (基于规则) b. COST (基于成本) c. CHOOSE (选择性) 设置缺省的优化器,可以通过对init.ora文件中OPTIMIZER ...
- Oracle使用——varchar2() 和 char()关联查询 存在空格
背景 表dbcontinfo 字段loanid,类型为varchar2(60) 表dbloanbal 字段loanid,类型为char(60) loanid字段实际长度为24位 问题 两张表dbloa ...
- Codeforces Round #577 (Div 2)
A. Important Exam 水题 #include<iostream> #include<string.h> #include<algorithm> #in ...
- H3C 帧中继数据链路标识
- P1090 后缀表达式
题目描述 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优先级). 如:3(5–2)+7对应的 ...
- java 代理的概念与作用
1.引入: 为已存在的多个具有相同接口的目标类的各个方法增加一些系统功能,例如,异常处理.日志.计算方法的运行时间.事务管理.等等,你准备如何做? 编写一个与目标类具有相同接口的代理类,代理类的每个方 ...
- H3C 因特网域名结构树
- 深入理解CSS盒模型(转)
转自:https://www.cnblogs.com/chengzp/p/cssbox.html 基本概念 盒模型的组成大家肯定都懂,由里向外content,padding,border,margin ...
- tet-2
一.html和css部分 1.如何理解CSS的盒子模型? 标准盒子模型:宽度=内容的宽度(content)+ border + padding 低版本IE盒子模型:宽度=内容宽度(content+ ...
- VS code 汉化及快捷键修改
VsCode汉化方式 Vscode是一款开源的跨平台编辑器.默认情况下,vscode使用的语言为英文(us),如何将其显示语言修改成中文了? 打开vscode工具: 点击左侧的Extensions(拓 ...